GUJARAT TECHNOLOGICAL UNIVERSITY

COMPUTER ENGINEERING MICROPROCESSOR AND INTERFACING SUBJECT CODE: 2150707 B.E. 5TH SEMESTER

Type of course: Core course

Prerequisite: Fundamentals of Digital Logic Design and Computer Organization

Rationale: The modern digital systems including computer systems are designed with microprocessor as central device connected to memory and I/O devices. The subject introduces the students with basics of microprocessor, microprocessor architecture and programming, interfacing microprocessor with memory and various I/O (Input/Output) devices and introduction to the advance processors including RISC based processors.

Teaching and Examination Scheme:

	Teaching Scheme Credits				Examination Marks					Total	
I		T	P	C	Theory Marks		Practical Marks		Marks		
					ESE	PA (M)		ESE (V)		PA	
					(E)	PA	ALA	ESE	OEP	(I)	
	4	0	2	6	70	20	10	20	10	20	150

Content:

Sr. No.	Content	Total HRS	% Weight age
1	Introduction to Microprocessor, Components of a Microprocessor: Registers, ALU and control & timing, System bus (data, address and control bus), Microprocessor systems with bus organization	4	8%
2	Microprocessor Architecture and Operations, Memory, I/O devices, Memory and I/O operations	4	7%
3	8085 Microprocessor Architecture, Address, Data And Control Buses, 8085 Pin Functions, Demultiplexing of Buses, Generation Of Control Signals, Instruction Cycle, Machine Cycles, T-States, Memory Interfacing	6	10%
4	Assembly Language Programming Basics, Classification of Instructions, Addressing Modes, 8085 Instruction Set, Instruction And Data Formats, Writing, Assembling & Executing A Program, Debugging The Programs	6	10%
5	Writing 8085 assembly language programs with decision, making and looping using data transfer, arithmetic, logical and branch instructions	6	10%
6	Stack & Subroutines, Developing Counters and Time Delay Routines, Code Conversion, BCD Arithmetic and 16-Bit Data operations	6	10%
7	Interfacing Concepts, Ports, Interfacing Of I/O Devices, Interrupts In 8085, Programmable Interrupt Controller 8259A, Programmable Peripheral Interface 8255A	8	15%
8	Advanced Microprocessors: 8086 logical block diagram and segments, 80286: Architecture, Registers	8	20%

	(Real/Protected mode), Privilege levels, descriptor cache, Memory access in GDT and LDT, multitasking, addressing modes, flag register 80386: Architecture, Register organization, Memory access in protected mode, Paging 80486: Only the technical features		
9	Pentium : Architecture and its versions SUN SPARC Microprocessor: Architecture, Register file, data types and	2.	5%
	instruction format	_	270
10	ARM Processor: Architecture features, Logical block diagram of ARM7 architecture	2	5%

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
12	20	24	6	4	4	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- **1.** Microprocessor Architecture, Programming, and Applications with the 8085, Ramesh S. Gaonkar Pub: Penram International.
- 2. Microprocessors and Interfacing, N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, Oxford
- 3. Advanced Microprocessors, Daniel Tabak, McGrawHill
- 4. Microprocessor & Interfacing Douglas Hall, TMH
- 5. 8086 Programming and Advance Processor Architecture, Savaliya M. T., WileyIndia
- 6. The 8088 and 8086 Microprocessors, Triebel & Singh, Pearson Education

Course Outcome:

After learning the course the students should be able to:

- List and specify the various features of microprocessor, memory and I/O devices including concepts of system bus.
- Identify the various elements of 8085 microprocessor architecture, its bus organization including control signals.
- List the pin functions of the 8085 microprocessor.
- Describe the 8085 processor addressing modes, instruction classification and function of each instruction and write the assembly language programs using 8085 instructions.
- Explain the concepts of memory and I/O interfacing with 8085 processor with Programmable devices.
- List and describe the features of advance microprocessors.

List of Experiments:

Practical list should be prepared based on the content of the subject and following guidelines should be useful.

- 8085 assembly language programmes covering all the instructions.
- Interfacing practicals using I/O instructions

Following list gives some programming examples. Teacher can prepare their own list in same manner keeping above guidelines and syllabus in mind.

- 1. Write an 8085 assembly language program for exchanging two 8-bit numbers stored in memory locations 2050h and 2051h.
- 2. Write an 8085 assembly language program to add two 8-bit numbers stored in memory locations 2050h and 2051h. Store result in location 2052h.
- 3. Write an 8085 assembly language program to add two 16-bit numbers stored in memory.
- 4. Write an 8085 assembly language program to add two decimal numbers using DAA instruction.
- 5. Write an 8085 assembly language program to find the minimum from two 8-bit numbers.
- 6. Write an 8085 assembly language program to get the minimum from block of N 8-bit numbers.
- 7. Write an 8085 assembly language program to add block of 8-bit numbers.
- 8. Write an 8085 assembly language program to find the number of 1's binary representation of given 8-bit number.
- 9. Write an 8085 assembly language program to count the length of string ended with 0dh starting from location 2050h.
- 10. Write an 8085 assembly language program to covert given hex digit to its equivalent ASCII number.
- 11. Write an 8085 assembly language program to compute even parity and insert it as MSB in 8-bit number.
- 12. Write a subroutine to exchange two 8-bit numbers. Use it to reverse an array of 8-bit numbers.

Design based Problems (DP)/Open Ended Problem:

- 1. Develop an 8085 Assembly language program to implement the Booth's algorithm to multiply two 8-bit numbers.
- 2. Develop an 8085 Assembly language program to implement division of two 8-bit numbers.
- 3. Design a program for Digital Clock with format HH:MM:SS (Address and data field) using inbuild routines of monitor program of your system.
- 4. Compare the microprocessor and microcontrollers from hardware and software point of view.
- 5. Prepare a detail report on evaluating overall performance of a microprocessor chip.

Major Equipment:

- 8085 based microprocessor kit
- Modern desktop PC with open source 8085 Simulator

List of Open Source Software/learning website:

- Open source simulator for 8085 processor
- www.nptel.ac.in
- www.intel.com
- www.cpu-world.com

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.