Course Name : Electronics Engineering Group Course Code : EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ED/EI/IU Semester : Third Subject Title : Principles of Digital Techniques Subject Code : 17320

Teaching and Examination Scheme:

Teaching Scheme						Examination	on Scheme	
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	25#		25@	150

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:

Digital Electronics plays important role in advancements of microelectronics design, manufacturing, computer technology and information systems that have caused the rapid increase in the use of digital circuits. Hence in every application digital technique is the backbone. Digital electronics requires the background of discrete signaling and logical functions, semiconductor switch theory. Hence this subject is introduced for students to sharpen their skills of digital implementation by learning the concept of number systems, logic gates, combinational and sequential logic circuits, memory, counter and shift register.

General Objectives:

The student will be able to

The subject student will be able to

- 1. Understand basic digital circuits.
- 2. Understand conversion of number systems.
- 3. Implement combinational and sequential circuits.
- 4. Understand logic families, data converters

Learning Structure:

Theory:

 Codes -BCD, Gray Code, Excess-3, ASCII code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families > Define Logic gates & logic families. > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. > Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3: Combinational Logic Circuits Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Topics and Contents	Hours	Marks
 Make conversion from one Number system to another. Perform simple arithmetic operations. Contents: 1.1 Introduction to digital signal, Advantages of Digital System over analog systems, (8 Marks) Number Systems: Different types of number systems (8 marks) Number Systems: Different types of number systems (9 marks) Binary arithmetic: Addition, Subtraction, Multiplication, Division. Subtraction using 1's complement and 2's complement Codes -BCD, Gray Code, Excess-3, ASCH code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families Define Logic gates & logic families. Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic families : (8 Marks) Cogic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3: Combinational Logic Circuits Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map. Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
 Perform simple arithmetic operations. Contents: I. Introduction to digital signal, Advantages of Digital System over analog systems, (8 Marks) Number Systems: Different types of number systems (Binary, Octal, Hexadecimal), conversion of number systems, (8 Marks) Binary arithmetic: Addition, Subtraction, Multiplication, Division. Subtraction using 1's complement and 2's complement Codes - BCD, Gray Code, Excess-3, ASCH code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families Develop logic for simple digital circuit Contents: I. Logic gates and Introduction to logic quations) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) Characteristics of logic families & Comparison between different logic families. Logic families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3: Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-ma			
Contents : 1.1 Introduction to digital signal, Advantages of Digital System over analog systems, 04 1.1 Introduction to digital signal, Advantages of Digital System over analog systems, 04 1.2 Introduction to digital signal, Advantages of Digital System over analog systems, 04 1.2 Introduction using 1, conversion of number systems, 04 1.2 Binary arithmetic: Addition, Subtraction, Multiplication, Division. 04 1.2 Codes : (4 Marks) • Codes -BCD, Gray Code, Excess-3, ASCII code 04 • BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). 06 Topic 2: Logic gates and introduction to logic families. 05 • Define Logic gates & logic families. 06 • Develop logic for simple digital circuit 06 Contents: (8 Marks) • Basic gates and Derived Gates (8 Marks) • Boolean Algebra: Fundamentals of Boolean laws. 06 • Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 06 2.2 Logic Families: (8 Marks) • Characteristics of logic families & Comparison between different logic families. 06 • Logic families such as TTL, CMOS, ECL. 16 • TTL NAND gate			
1.1 Introduction to digital signal, Advantages of Digital System over analog systems, (8 Marks) Number Systems: Different types of number systems, Binary arithmetic: Addition, Subtraction, Multiplication, Division. Subtraction using 1's complement and 2's complement 04 Subtraction using 1's complement and 2's complement Codes -BCD, Gray Code, Excess-3, ASCII code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). 04 Codes -BCD, Gray Code, Excess-3, ASCII code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). 04 Topic 2: Logic gates and introduction to logic families Develop logic for simple digital circuit Contents: NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) Characteristics of logic families & Comparison between different logic families. Logic families: Cong families: Combinational Logic Circuits Condents: Use peripheral devices like buffer. Contents: Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms.<!--</td--><td></td><td></td><td></td>			
systems, (8 Marks) • Number Systems: Different types of number systems, 04 • Binary arithmetic: Addition, Subtraction, Multiplication, Division. 04 • Subtraction using 1's complement and 2's complement 04 12 Codes : (4 Marks) • Codes -BCD, Gray Code, Excess-3, ASCII code (4 Marks) • Codes -BCD, Gray Code, Excess-3, ASCII code 05 • BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). 10 Topic 2: Logic gates and introduction to logic families 04 • Develop logic for simple digital circuit 10 Contents: (8 Marks) 06 2.1 Logic gates: (8 Marks) 06 • Basic gates and Derived Gates NAND and NOR as Universal gates. 06 • Doalean Algebra: Fundamentals of Boolean laws. 06 16 • Duagic families: (8 Marks) 06 • Characteristics of logic families & Comparison between different logic families. 06 16 • Characteristics of logic families & Comparison between different logic families. 06 16 • Characteristics of logic families & Comparison between different logic families. 12 16 <tr< td=""><td></td><td></td><td></td></tr<>			
Hexadecimal), conversion of number systems, Image: Systems, Binary arithmetic: Addition, Subtraction, Multiplication, Division. Subtraction using 1's complement and 2's complement 1.2 Codes : (4 Marks) • Codes -BCD, Gray Code, Excess-3, ASCII code • BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families > Define Logic gates & logic families. > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) • Basic gates and Derived Gates • NAND and NOR as Universal gates. • Boolean Algebra: Fundamentals of Boolean laws. • Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families:: (8 Marks) • Characteristics of logic families & Comparison between different logic families. • Logic families such as TTL, CMOS, ECL. • TTL NAND gate – Totem pole output, open collector. • CMOS Inverter Topic 3: Combinational Logic Circuits • Realize various digital Circuits using K-map. • Realize various combinational logic circuits. • Use peripheral devices like buffer. Contents: </td <td></td> <td></td> <td></td>			
 Subtraction using 1's complement and 2's complement Subtraction using 1's complement and 2's complement Codes : (4 Marks) Codes : BCD, Gray Code, Excess-3, ASCII code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families > Define Logic gates & logic families. > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3: Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Hexadecimal), conversion of number systems,	04	12
 Codes -BCD, Gray Code, Excess-3, ASCII code BCD addition, BCD subtraction using 9's and 10' complement (Numericals based on above topic). Topic 2: Logic gates and introduction to logic families > Define Logic gates & logic families. > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. > Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3: Combinational Logic Circuits Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
(Numericals based on above topic). 1 Topic 2: Logic gates and introduction to logic families > > Derine Logic gates & logic families. > > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) • Basic gates and Derived Gates • • NAND and NOR as Universal gates. • • Boolean Algebra: Fundamentals of Boolean laws. 06 • Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 06 2.2 Logic Families:: (8 Marks) • Characteristics of logic families & Comparison between different logic families. 06 • Logic families such as TTL, CMOS, ECL. • • TTL NAND gate – Totem pole output, open collector. • • CMOS Inverter • Topic 3: Combinational Logic Circuits • • Realize various digital Circuits using K-map. • • Realize various digital Circuits using K-map. • • Realize various combinational logic circuits. • • Use peripheral devices like buffer. • Contents: 3.1 Introduction: (8 Marks) • Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), con	Codes -BCD, Gray Code, Excess-3, ASCII code		
Topic 2: Logic gates and introduction to logic families > Define Logic gates & logic families. > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families:: (8 Marks) • Characteristics of logic families & Comparison between different logic families. • Logic families such as TTL, CMOS, ECL. • TTL NAND gate – Totem pole output, open collector. • CMOS Inverter Topic 3: Combinational Logic Circuits • Realize various digital Circuits using K-map. • Realize various digital Circuits using K-map. • Realize various digital Circuits using K-map. • Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. • K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, • Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit),			
 Define Logic gates & logic families. Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 		1	
 > Develop logic for simple digital circuit Contents: 2.1 Logic gates: (8 Marks) AND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various digital Circuits using K-map. Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
2.1 Logic gates: (8 Marks) • Basic gates and Derived Gates NAND and NOR as Universal gates. • Boolean Algebra: Fundamentals of Boolean laws. 06 • Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 06 2.2 Logic Families:: (8 Marks) • Characteristics of logic families & Comparison between different logic families. 06 • Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. • CMOS Inverter 7 Topic 3 : Combinational Logic Circuits 8 • Realize various digital Circuits using K-map. 14 • Realize various combinational logic circuits. 14 • Use peripheral devices like buffer. 14 Contents: 3.1 Introduction: (8 Marks) • Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. 14 • K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map. 14 • Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 14			
 Basic gates and Derived Gates NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Contents:		
 NAND and NOR as Universal gates. Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	2.1 Logic gates: (8 Marks)		
 Boolean Algebra: Fundamentals of Boolean laws. Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) K-map reduction technique upto 4 variables. (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Basic gates and Derived Gates		
 Duality Theorem, De Morgan's theorems. (numerical based on simplification of logic equations) 2.2 Logic Families: (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	• NAND and NOR as Universal gates.		
(numerical based on simplification of logic equations)2.2 Logic Families: :(8 Marks)• Characteristics of logic families & Comparison between different logic families.• Logic families such as TTL, CMOS, ECL.• TTL NAND gate – Totem pole output, open collector.• CMOS InverterTopic 3 : Combinational Logic Circuits• Realize various digital Circuits using K-map.• Realize various combinational logic circuits.• Use peripheral devices like buffer.Contents:3.1 Introduction:• Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms.• K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, • Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit),	Boolean Algebra: Fundamentals of Boolean laws.		
 2.2 Logic Families: : (8 Marks) Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 		06	16
 Characteristics of logic families & Comparison between different logic families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	(numerical based on simplification of logic equations)		
 families. Logic families such as TTL, CMOS, ECL. TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	2.2 Logic Families: : (8 Marks)		
 TTL NAND gate – Totem pole output, open collector. CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
 CMOS Inverter Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	• Logic families such as TTL, CMOS, ECL.		
 Topic 3 : Combinational Logic Circuits Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	• TTL NAND gate – Totem pole output, open collector.		
 Realize various digital Circuits using K-map. Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: Use peripheral devices like buffer. Contents: Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	CMOS Inverter		
 Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Topic 3 : Combinational Logic Circuits		
 Realize various combinational logic circuits. Use peripheral devices like buffer. Contents: 3.1 Introduction: Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Realize various digital Circuits using K-map.		
 Use peripheral devices like buffer. Contents: 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
 3.1 Introduction: (8 Marks) Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	• Use peripheral devices like buffer.		
 Standard representation of canonical forms (SOP & POS), Maxterm & 14 22 Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	Contents:		
 Standard representation of canonical forms (SOP & POS), Maxterm & Minterm), conversion between SOP and POS forms. K-map reduction technique upto 4 variables. (SOP & POS form), Design of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 	3.1 Introduction: (8 Marks)	14	22
 of half and full Adder, half and Full Subtractor using K-map, Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 		14	22
 Code Converter using K-map: Gray to Binary, Binary to Gray Code Converter (up to 4-bit), 			
	Code Converter using K-map: Gray to Binary, Binary to Gray Code		
	 IC 7447 as BCD to 7 segment decoder – driver 		

1	1
10	24
12	24
06	16
	12

w.e.f Academic Year 2012-13

	Total	48	100
• Identification of IC number and their function of following ICs: 2716, IC 7481& IC 6116.	IC		
Study of memory ICs :	IC		
Comparison between EPROM and Flash			
• Flash memory.			
• ROM (PROM, EPROM, EEPROM)			
• RAM (Static, Dynamic), Volatile and Non-Volatile		00	10
Organization of memories		06	10
6.1 Principle of operation and classification of memory.			
Contents:			
\sim Apply ICs 2/10, 7481, 6116 in practical applications.			
 Classify memories. Apply ICs 2716, 7481, 6116 in practical applications. 			
Topic 6: Memories			
IC PCF 8591 : 8 BIT ADC-DAC			
 Single slope ADC, Dual slope ADC, SAR ADC 			
following ADCs : (08 Marks)			

Practicals:

Intellectual skills:

- 1) Identify different ICs of logic gates, combinational and sequential circuits and memories.
- 2) Distinguish and realize combinational and sequential circuits.
- 3) Verify standard T.T and test ICs.

Motor skills:

- 1) Make proper connections as per given circuit diagram.
- 2) Build, test and debug the digital circuit.
- 3) Observe result and proper handling of equipments.

List of Experiments:-

Sr. No	Title of Experiment
1	Verify the truth table of Basic logic gates using diode and transistor.
2	Verify De Morgan's Theorem
3	Verify NAND and NOR gate as universal logic gate.
4	Verify Truth Table of bi-directional buffer – IC 74245
5	Realize adder and subtractor.
6	Verify the operational features of ADC – IC 0809/IC 0808 and DAC – IC 0800.
7	Verify the operation of Multiplexer IC 74151 and Demultiplexer IC 74155.
8	Realize and verify RS flip flop using NAND gate and verify master slave JK Flip-
0	Flop using IC 7476.
9	Implement 4 bit ripple counter
10	Implement 4 bit R-2R D/A converter.

Learning Resources:

1. Books:

Sr. No	Title	Author	Publisher
01	Digital Principles	Malvino Leach	Tata McGrew Hill (TMH)
02	Modern Digital Electronics	R.P. Jain	Tata McGrew Hill (TMH)
03	Digital Electronics, Principles and Integrated Circuits	Anil K. Maini	Wiely India Edition
04	Digital Electronics (Second Edition)	P.Raja	SCITECH Publications (India) Pvt. Ltd.
05	Digital Electronics	G.K.Kharate	OXFORD Publication