Course Name	: Electronics Engineering Group
Course Code	: EJ/EX/ET/EN/DE/EV/ED/EI
Semester	: Fifth for EJ/EX/ET/EN/DE/EV and Sixth for ED/EI
Subject Title	: Digital Communication
Subject Code	: 17535

Teaching and Examination Scheme:

Teac	hing Scl	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	50#		25@	175

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

"Digital communication" is a Core subject for the Electronics & Communication engineering student. Communication technologies have undergone radical changes, especially due to convergence of computers and communication. Digital communication offers data processing option and flexibility which is not available with analog communication. This subject will enable the student to comprehend facts, concept and working principles of Digital communication systems.

This subject familiarizes the student with digital information theory, information rate and channel capacity. This subject helps the students to understand the concept of principles of digital modulation technique, channel coding method and error control multiplexing, Multiple Access scheme and spread spectrum modulation.. The Knowledge acquired by student will help them to apply in various modern communication systems.

General Objectives:

Student will be able to

- Understand principles and Concept of various digital modulation techniques.
- Understand various coding, error detection and error correction methods.
- Understand various multiplexing technique and multiple Access Scheme.
- Understand spread spectrum modulation and their different methods.

Learning Structure:

Theory:

Topic and Contents	Hours	Marks
Topic 1: Introduction of Digital Communication		
Specific Objectives:		
Define Digital Communication, communication channel		
Explain different element of Digital Communication.		
Compare analog. with digital communication		
Contents:	02	07
Historical perspective of Digital Communication	02	06
• Elements of Digital Communication system with its block diagram.		
• Communication channel types and their Characteristics (bit rate,		
bandwidth, repeater distance) applications, and Channel modeling,		
channel noise.		
Comparison of Analog and digital communication system.		
Topic 2: Digital Pulse Modulation Techniques.		
Specific Objectives:		
> Define and explain, generation and demodulation of various digital		
pulse modulation techniques.		
Define Sampling theorem		
Compare digital pulse modulation with analog modulation		
Contents:		
2.1 [04 Marks]		
• Sampling process Nyquist sampling theorem.		
Ouantization process, Quantization error, Quantization noise, Uniform		
Non Uniform Quantization (companding) u law, A law (concept)		
2.2 [16 Marks]	10	•
• Pulse code modulation (PCM) Transmitter and Receiver block diagram	12	20
and its working. Advantage and Disadvantages of PCM.		
• Differential pulse code modulation (DPCM). Transmitter and Receiver		
block diagram and its working, Advantage and disadvantage of		
DPCM		
• Delta Modulation (DM) Block diagram of Transmitter and Receiver,		
slope overload and Granular noise, Advantage and disadvantage of		
DM.		
Adaptive Delta modulation (ADM) Transmitter and Receiver block		
diagram. Advantage and Disadvantages of ADM		
• Comparison of analog and Digital Pulse modulation, Comparison of		
various digital pulse Modulation		
Topic 3: Coding Methods and Error Control.		
Specific Objectives:		
Define bit rate, baud rate		
State Hartleys law, Shannon Hartleys theorem and channel capacity.		
Define source coding		
Explain channel coding and their types and error correction codes.	08	16
Define various types of line coding.	00	10
Contents:		
5.1 [U6 Marks]		
• Bits, bit rate and baud rate, Hartleys law, Shannon Hartleys theorm,		
Channel capacity.		

• Source coding, sources, Entro	py, baudot code, Huffman coding.		
• Channel coding · error cause	s of error and its effect error detection		
and correction using parity, e	rror control codes, checksum. Two		
dimensional parity check Ver	tical redundancy Check (VRC).		
Longitudinal Redundancy Cl	neck (LRC) Cvclic Redundancy Check		
(CRC). Hamming codes.			
• Line coding: classification of	line codes uni polar. Polar Non return to		
Zero (NRZ) and Return to zero	To (RZ) Bipolar (NRZ) Manchester (split		
nhase) Differential Manchest	er Bipolar RZ Pseudo ternary alternate		
Mark Inversion (AMI) and th	eir waveforms		
Topic 4: Digital Modulation Techn	ique.		
Specific Objectives:	-1		
> Define M- ary encoding			
 Explain various transmitter & 	receiver for digital communication		
 Compare various digital mod 	ulation techniques.		
 Draw constellation and prope 	r diagram.		
Contents:			
• M-ary encoding, Minimum b	andwidth		
Amplitude Shift Keying (ASI	() Frequency shift keying (FSK), Phase		
shift keying (PSK), transmitte	er and receiver block diagram and their	12	24
working with waveform.	C		
Ouadrature Phase shift keyin	g (OPSK), Ouadrature amplitude		
modulation (OAM). Differe	ntial Phase shift keying (DPSK)		
transmitter and receiver block	diagram and their working with		
waveform.			
• Constellation diagram and ph	asor diagram of each modulation		
techniques			
Comparison of Digital modul	ation technique along with bandwidth of		
each one.			
Topic 5: Multiplexing & Multiple	Access.		
Specific Objectives:			
> Define FDM, TDM, CDM S	DM		
Explain multiple acess system	n like FDMA . TDMA . CDMA . SDMA		
➢ Compare OFDM , and CDM	A		
Contents:			
5.1	[10 Marks]		
Need of Multiplexing Time	Division Multiplexing (TDM), Frequency		
Division Multiplexing (FDM	1), Code Division multiplexing (CDM),	00	20
Space Division Multiplexing	g (SDM) definition, block diagram and	08	20
their comparison.			
• T carrier system, Digital 1	nultiplexing hierarchy, North American		
hierarchy, The CCITT digital	multiplexing hierarchy		
Introduction to Wavelength I	Division Multiplexing (WDM)		
5.2	[10 Marks]		
Access techniques Time Divi	sion Multiple Access (TDMA), Frequency		
Division multiple Access (1	FDMA), Code Division Multiple access		
(CDMA), Space Division M	fultiple Access (SDMA), comparison of		
different Access techniques.			

 Wide band modulation Techniques: Orthogonal Frequency Division Multiplexing (OFDM) basic principle of orthogonality, single vs. multicarrier system OFDM block diagram and its explanation. Comparisons between CDMA and OFDM Topic 6: Spread Spectrum Modulation Specific Objectives: Define PN sequence Explain Spread Spectrum modulation s DSSS & FHSS Sate Applications of S.S modulation Contents: 		
U. I [U0 Marks]		
 Introduction to spread spectrum (SS) Modulation, advantages over fixed frequency, Types of SS Modulation Applications of SS modulation. Pseudo Noise (PN) sequence: definition, generation and maximum 	06	14
length sequence		
Model of Spread Spectrum modulation system		
6.2 [08 Marks]		
• Direct sequence spread spectrum signal.		
 Frequency spread spectrum. Slow frequency hopping and fast frequency hopping. 		
• Comparisons of Direct sequence spread spectrum (DSSS) and		
Frequency Hop spread spectrum (FHSS)		
DSSS based CDMA system , CDMA with FHSS block diagram	10	100
Total	48	100

Practical: Skills to be developed:

Intellectual Skills:

- 1. Interpret given circuit, type of modulation
- 2. Interpret the results
- 3. Interpret the various types of waveforms

Motor Skills:

- 1. Draw circuit diagram
- 2. Setting up of equipment
- 3. Accurate observation and draw the waveforms

List of Practicals:

- 1. Observe and plot waveforms of PCM modulation and demodulation observe the effect of sampling frequency. Study A law and u law.
- 2. Observe and plot waveforms of DPCM modulation and demodulation
- 3. Observe and plot waveforms of DM and ADM modulation and demodulation
- 4. Generate different line codes UPRZ, UPNRZ, PRZ, PNRZ, BPRZ and observe waveforms. Generate and decode Manchester and differential Manchester codes.
- 5. Observe and plot waveforms of ASK ,FSK,PSK modulation and demodulation
- 6. Observe and plot waveforms of QPSK modulation and demodulation
- 7. Observe and plot waveforms of QAM modulation and demodulation

- 8. Observe and plot waveforms of DPSK modulation and demodulation
- 9. Observe and plot waveforms of FDM and TDM multiplexing and demultiplexing techniques.
- 10. Generate variable length PN sequence for CDMA-DSSS signal and demodulate. Observe and draw spreading and dispersing waveforms.
- 11. Generate FHSS and demodulate it Observe and draw spreading and dispersing waveforms

Learning Resources:

1. Books:

Sr. No.	Author	Title	Publisher	
1.	P. Ramakrishna Rao	Digital Communication	Tata Mcgraw Hill	
2.	Amitabha Bhattacharya	Digital Communication	Tata Mcgraw Hill	
3.	Wayne Tomasi	Electronics Communication System	Pearson Education	
4.	Upen Dalal	Wireless Communication	Oxford	

2. Websites:

- 1. http://academicearth.org/courses/principles-of-digital-communication lecture 1 & lecture 6
- 2. http://nptel.iitm.ac.in/video.php?subjectId=117101051digital communication lecture series
- http://educypedia.karadimov.info/electronics/javamodulationdig.htm FDMA, TDMA, CDMA, FSK, PAM etc Animations
- 4. http://educypedia.karadimov.info/electronics/rfdigmod.htm various topics on digital modulation