Subject Code	Subject Name	Teach	ning Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total	
ETC 303	Digital Electronics	04			04			04	

Subject	Subject	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Int	ernal a	ssessment	End	Work	and oral		
		Test	Test	Avg. of Test	Sem.				
		1	2	1 and Test 2	Exam				
ETC303	Digital	20	20	20	80	-	-	-	100
	Electronics								

Course objectives:

- To introduce the fundamental concepts and methods for design of various digital circuits.
- To build the skill of digital system design and testing used in various fields of computing, communication, automatic control of mechanisms and instrumentation.

Course outcomes:

After completion of course, students will be

- Able to distinguish between analog and digital signals & data.
- Able to analyze, transform & minimize combination logic circuits.
- Able to understand basic arithmetic circuits.
- Able to design and analyze sequential circuits.
- Able to design digital system and components.

Module	Unit	Topics	Hre
No.	No.		1113.
1.0		Number Systems and Codes	04
	1.1	Arithmetic codes: Review of number system, BCD code, Octal code, Hexa-	
		decimal code, EX-3 code, Gray code, ASCII Code	
2.0		Logic Gates and Combinational Logic Circuits	16
	2.1	DTL, TTL, ECL and CMOS gates: Transfer characteristics, noise margin, fan-in,	
		fan-out, introduction to their logic families, their transfer characteristics and noise	
		margin	
	2.2	Universal gates and combinational circuits: Realization of basic gates using	
		nand and NOR gales, boolean algebra, de morgan's theorem, SOP and POS	
		entered manning	
	2.3	Arithmetic circuits: Adder subtractor carry look ahead adder BCD adder	
		magnitude comparator, binary multiplier, series and parallel adder	
	2.4	Multiplexer and de-multiplexer: Boolean functions implementation using	
		multiplexer and de-multiplexer, encoder and decoder, parity generator and	
		checker	
3.0		Sequential Logic Circuits	16
	3.1	Flip flops and registers: RS, JK, T, D and master slave flip flops, conversion of	
		flip flops, universal shift registers	
	3.2	Counter design: Asynchronous and synchronous counter, up/down counter,	
		mod-N counter, pre-settable counter, skipping state counter	
	3.3	Shift registers design: SISO, SIPO, PISO, PIPO, shift left and shift right	
		registers	
	3.4	Applications of sequential circuits: Frequency division, ring counter, Johnson	
		counter, Moore and Mealy machine, state transition diagram, synthesis table	
4.0	3.6	State reduction techniques: Row elimination and implication table methods	00
4.0		Different types of Memory	06
	4.1	Classification and characteristics of memory: SRAM, DRAM, ROM, PROM,	
5.0		Introduction to Programmable Logic Devices	10
5.0	51	CPL D and EPCA: Architecture of CPL D and EPCA. Viling XC 9500 CPL D Series	10
	5.1	and Xilinx XC 4000 FPGA Series	
	5.2	VHDL: Data types, Structural Modeling using VHDL, attributes, data flow,	
		behavioral, VHDL implementation of basic combinational and sequential Circuits	
	5.3	Programmable Logic Devices: PLA and PAL	
		Total	52

Text Books:

- 1. Morris Mano and Michael D. Ciletti, *"Digital Design"*, Pearson Education, Fourth Edition, 2008.
- 2. Malvino A.P. and Leach D.P., "Digital Principles and Applications", TMH, 6th Edition

Reference Books:

- 1. John F. Warkerly, "*Digital Design Principles and Practices*", Person Education, Fourth Edition, 2008.
- 2. J. Bhaskar, "VHDL Primer", Prentice Hall, 3rd Edition
- 3. William I. Fletchter, "An Engineering Approach to Digital Design", PHI, Tenth Indian Reprint, 2001.
- 4. Norman Balabanian and Bradley Carlson, "*Digital Logic Design Principles*", John Wiley & Sons, First Edition, 2011.
- 5. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, Second Edition, 2012.
- 6. Charles H. Roth, *"Fundamentals of Logic Design"*, Jaico Publishing House, First Edition, 2004.
- 7. G. K. Kharate, "Digital Electronics", Oxford University Press, First Edition, 2010
- 8. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill Education, Third Edition 2003.
- 9. Frank Vahid, "Digital Design", John Willy and Sons, First Edition, 2011.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.