Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC 403	Microprocessors	4			4			04
	and Peripherals							

Subject	Subject	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work	and		
		Test	Test	Avg. Of Test	Exam		Oral		
		1	2	1 and Test 2					
ETC403	Microproces	20	20	20	80	-	-	-	100
	sor and								
	Peripherals								

Course pre-requisite:

ETC 303 : Digital Electronics

Course objectives:

- To develop background knowledge and core expertise in microprocessor.
- To study the concepts and basic architecture of 8085, 8086, 80286, 80386, 80486 Pentium processor and Co-processor 8087.
- To know the importance of different peripheral devices and their interfacing to 8086.
- To know the design aspects of basic microprocessor.
- To write assembly language programs in microprocessor for various applications.

Course outcomes:

Students will learn

- The architecture and software aspects of microprocessor 8086
- Assembly language program in 8086 for various applications.
- Co-processor configurations.
- Various interfacing techniques with 8086 for various applications.
- Basic concepts of advanced microprocessors.

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Architecture of 8085 and 8086 Microprocessor	08
	1.1	8085 Architecture and pin configuration.	
	1.2	8086 Architecture and organization, pin configuration.	
	1.3	Minimum and Maximum modes of 8086.	
	1.4	Read and Write bus cycle of 8086.	
2.0		Instruction set and programming of 8086	10
	2.1	8086 Addressing modes.	
	2.2	8086 Instruction encoding formats and instruction set.	
	2.3	Assembler directives.	
	2.4	8086 programming and debugging of assembly language	
3.0		Peripherals interfacing with 8086 and applications	10
0.0	31	8086-Interrupt structure	10
	3.2	Programmable interrupt controller 82504	
	33	Programmable neripheral Interface 8255	
	34	Programmable interval Timer 8254	
	3.5	DMA controller 8257	
	3.6	Interfacing 8259A 8255 8254 8257 with 8086 and their	
	0.0	applications	
4.0		ADC, DAC interfacing with 8086 and its application	08
	4.1	Analog to Digital Converter (ADC) 0809	
	4.2	Digital to Analog Convertor (DAC) 0808	
	4.3	Interfacing ADC 0809, DAC 0808 with 8086 and their	
		applications.	
	4.4	8086 based data Acquisition system.	
5.0		8086 Microprocessor interfacing	10
	5.1	8087 Math coprocessor, its data types and interfacing with	
		8086.	
	5.2	Memory interfacing with 8086 microprocessor	
6.0		Advanced Microprocessors	06
	6.1	Basic architectures of 80286, 80386, 80486 and Pentium	
		processor.	
		Total	52

Text Books:

- 1. Gaonkar R.S.: "Microprocessor Architecture Programming and Applications with the 8085" Penram International Pub, 5th Edition.
- 2. John Uffenbeck: "8086/8088 family: "Design, Programming and Interfacing", Prentice Hall, 2ndEdition
- 3. B. B. Brey: "The Intel Microprocessors 8086/8088, 80186/80188, 80286, 80386, 80486, Pentium and Pentium Pro Processor", Pearson Pub, 8th Edition

Reference Books:

- 1. Hall D.V: "Microprocessor and Interfacing Programming and Hardware", Tata McGraw Hill, 2nd Edition.
- 2. A. K. Ray and K. M. Burchandi: "Advanced Microprocessor and Peripherals, Architecture Programming and Interfacing", Tata McGrawHill, 3rd Edition
- 3. Don Anderson, Tom Shanley: "Pentium Processor System Architecture", MindShare Inc., 2nd Edition
- 4. National Semiconductor: Data Acquisition Linear Devices Data Book
- 5. Intel Peripheral Devices: Data Book.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.