Subject Code	Subject Name	Teach	ing Schem	e (Hrs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC 404	Wave Theory and Propagation	4			4		-	04

Subject	Subject	Examination Scheme								
Code	Name	Theory Marks				Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test 2	Avg. Of Test 1 and Test 2	Exam					
ETC 404	Wave Theory and Propagation	20	20	20	80		-	-	100	

Course Pre-requisite

Vector Algebra, Vector Integral

Course Objective:

- To understand basic laws of electrostatics and magnetostatics in vector form.
- To understand the propagation of wave in different media like dielectric and conducting media by solving wave equation and find parameters of media.
- To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- To solve electromagnetic problems using different numerical methods.
- To extend the students' understanding about the propagation of the waves by different types such as ground waves and space waves.
- To study the factors affecting the wave during its propagation.
- To understand sky wave propagation; related parameters such as MUF, skip distance and critical frequency.

Expected Outcomes:

- Ability to find nature of electric or magnetic field produced due to different charge distributions.
- Ability to understand working of different equipments based on electromagnetic used in day to day life.
- Knowledge of behavior of EM waves and travelling of waves in free space as well as media.
- Able to find conditions for loss of signal.
- Able to apply numerical methods for designing antennas.
- An ability to select proper parameters for propagation of the waves by considering the factors affecting.
- Any ability to identify and solve problems related to the propagation of waves.
- To understand the basics of wave propagation required for the study of antennas.

Module No.	Unit No.	Topics	Hrs.
1.0		Basic Laws of electromagnetic & Maxwell's equations	13
	1.1	Fundamental laws of electromagnetic fields: Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's and Laplace equations	
	1.2	Boundary conditions: Static electric and magnetic fields	
	1.3	Maxwell's equations: Integral and differential form for static and time	
		varying fields and its interpretations	
	1.4	Applications of electromagnetic fields: Ink-jet printer, CRO,	
		electromagnetic pump	
2.0		Uniform plane wave equation and power balance	08
	2.1	Wave equation: Derivation and its solution in Cartesian co-ordinates	
	2.2	Solution of wave equations: Partially conducting media, perfect dielectrics	
		and good conductors, concept of skin dept	
	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space and	
0.0		in dielectric, conducting media	
3.0	2.4	Plane Wave Propagation	06
	3.1 3.2	Polarization of wave; Elliptical. Linear and Circular	
	3.2	Propagation in different mediums: Behavior of waves for normal and	
		oblique incidence in dielectrics and conducting media, propagation in dispersive media	
4.0		Computational Electromagnetics	08
	4.1	Finite Difference Method (FDM):Neumann type and mixed boundary	
		conditions, Iterative solution of finite difference equations, solutions using band matrix method	
	4.2	Finite Element Method (FEM) : Triangular mesh configuration, Finite element discretization, Element governing equations, Assembling all equations and solving resulting equations	
	4.3	Method of Moment (MOM): Field calculations of conducting wire, parallel conducting wires and complicated geometries	
5.0		Radio Wave Propagation	10
	5.1	Types of wave propagation: Ground, space and surface wave propagation, tilt and surface waves, impact of imperfect earth and earth's behavior at different frequencies	
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of interference zone, shadowing effect of hills and building, atmospheric absorption, Super-refraction, scattering phenomena, troposphere propagation and fading	
6.0		Sky Wave Propagation	07
	6.1	Reflection and Refraction of waves : Ionosphere and Earth magnetic field effect	
	6.2	Measures of Ionosphere Propagation: Critical frequency, Angle of incidence, Maximum unstable frequency, Skip distance, Virtual height, Variations in ionosphere and Attenuation and fading of waves in ionosphere	
		Total	52

Text Books:

- 1. J.A. Administer, "Electromagnetic", McGraw Hill Companies, 2nd Edition, 2006
- 2. Bhag Guru and Huseyin Hiziroglu, *"Electromagnetic field theory fundamentals"*, Cambridge University Press, 2nd Edition, 2010.
- 3. J.D. Kraus, R.J. Marhefka, A.S. Khan *"Antennas & Wave Propagation"*, McGraw Hill Publications, 4th Edition, 2011

Reference Books

- 1. R.K. Shevgaonkar, Electromagnetic Waves, TATA McGraw Hill Companies, 3rd Edition, 2009
- 2. R.L. Yadava, Antenna & Wave Propagation, PHI Publications, 1st Edition, 2011
- Edward C. Jordan, Keth G. Balmin, Electromagnetic Waves & Radiating Systems, Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. SADIKU, Principles of Electromagnetics, Oxford International Student 4th Edition, 2007
- 5. W.H. Hayt, J.A. Buck, Engineering Electromagnetics, McGraw Hill Publications, 7th Edition, 2006.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.