Subject Code	Subject Name	Te	aching Scho Hrs.	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC 405	Control Systems	04	-		04			04	

Subject	Subject	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work	And Oral		
		Test	Test	Avg. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC	Control	20	20	20	80				100
405	Systems								

Course pre-requisite:

Dynamics; Differential Educations; Laplace Transforms.

Course objectives:

Objectives of this course are:

- To teach the fundamental concepts of Control systems and mathematical modeling of the system.
- To study the concept of time response and frequency response of the system.
- To teach the basics of stability analysis of the system

Course outcomes:

The outcomes of this course are:

- Students will be able to derive the mathematical model of different type of the systems.
- Students will understand the basic concepts of control system.
- Students will understand the analysis of systems in time and frequency domain.
- Students will be able to apply the control theory to design the conventional controllers widely used in the industries.

Module	Unit	Topics	Hrs.
1.0	110.	Introduction to Control System Analysis	08
	1.1	Introduction: Open loop and closed loop systems, feedback and feed	
		forward control structure, examples of control systems.	
	1.2	Modeling: Types of models, impulse response model, state variable model,	
		transfer function model	
	1.3	Dynamic Response: Standard test signals, transient and steady state behavior of first and second order systems, steady state errors in feedback control systems and their types	
2.0		Mathematical Modeling of Systems	08
	2.1	Transfer Function models of various systems: Models of mechanical systems, models of electrical systems, block diagram reduction, signal flow graph, and the Mason's gain rule	
3.0		State Variable Models	12
	3.1	State Variable Models of Various Systems: State variable models of	
	3.2	State Transition Equation: Concept of state transition matrix, properties of	
	5.2	state transition matrix, solution of homogeneous systems, solution of non-	
		homogeneous systems	
	3.3	Controllability and Observability: Concept of controllability, controllability analysis of LTI systems, concept of observability, observability analysis of LTI systems.	
4 0		Stability Analysis In Time Domain	08
-1.0	4.1	Concepts of Stability: Concept of absolute, relative and robust stability.	
		routh stability criterion	
	4.2	Root Locus Analysis: Root-locus concepts, general rules for constructing root-locus, root-locus analysis of control systems, design of lag and lead	
		compensators	
5.0		Stability Analysis In Frequency Domain	08
	5.1	Introduction : Frequency domain specifications, response peak and peak resonating frequency, relationship between time and frequency domain specification of system, stability margins	
	5.2	Bode plot: Magnitude and phase plot; Method of plotting Bode plot; Stability margins on the Bode plots; Stability analysis using Bode plot.	
	5.3	Nyquist Criterion: Polar plots, Nyquist stability criterions; Nyquist plot; Gain	
		and phase margins.	
6.0		Optimal and Adaptive Control Systems	<mark>08</mark>
	6.1	Optimal control: Performance measure for optimal control problems, the principle of optimality, concept of dynamic programming, fundamental of a single Function, Functions involving several independent Functions, constrained minimization of Functions	
	6.2	Adaptive Control Systems: Model reference adaptive control approach for	
		controller design, Neuro-Fuzzy adaptive control (only concept)	F 0
	1	IOTAI	5 2

Text books:

- 1. Nagrath, M.Gopal, "Control System Engineering", Tata McGraw Hill.
- 2. K.Ogata, *"Modern Control Engineering, Pearson Education",* IIIrd edition.
- 3. Benjamin C.Kuo, *"Automatic Control Systems, Eearson education"*, VIIth edition.

Reference Books:

- 1. Madam Gopal, Control Systems Principles and Design, Tata McGraw hill, 7th edition, 1997.
- 2. Normon, Control System Engineering, John Wiley & sons, 3rd edition.
- 3. Curtis Johnson, Process Control Instrumentation Technology, Pearson education fourth edition.
- 4. Dhanesh N. Manik, "Control Systems", Cengage Learning, 1st edition, 2012.
- 5. Sastry S. S., "Adaptive Control", PHI.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.