Course	Course	Teaching Scheme			Credits Assigned			
Code	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETC503	Random	04		01	04		01	05
	Signal							
	Analysis							

Course	Course	Examination Scheme							
Code	Name			Theory Marl	Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC503	Random	20	20	20	80	25	-	-	125
	Signal								
	Analysis								

Course Pre – requisite:

- ETC 405: Signals and Systems
- ETC 401: Applied Mathematics IV

Course Objective: To teach students

- Random Variables and Random Process
- The design of the systems which involves randomness using mathematical analysis and computer simulations.

Course Outcome : At the end of the course, students will able to

- Apply theory of probability in identifying and solving relevant problems.
- Define and differentiate random variables and vector through the use of cumulative distribution function (CDF), probability density function (PDF), probability mass function (PMF) as well as joint, marginal and conditional CDF, PDF and PMF.
- Show probability and expectation computations using important discrete and continuous random variable types.
- Define and specify random processes and determine whether a given process is stationary or wide sense stationary.
- Determine the response of a linear time invariant system to such a random process.
- Describe basic concepts related to Markov chains and queuing theory and relate it to seal world applications.

Module		Overview of Probability Theory and Basics of Random Variables I						
No.								
1	1.1	Sample space, events, set operations, the notion and axioms of probability.	10					
	1.2	Conditional probability, Joint probability, Baye's rule, Independence of events,						
		Sequential Experiments.						
	1.3	Notion of random variable.						
	1.4	Continuous random variables, probability density function, probability distribution						
		function, Uniform, Exponential and Gaussian continuous random variables and						
		distributions.						
	1.5	Discrete random variables, probability mass function, probability distribution						
		function, binomial, Poisson and geometric discrete random variables and						
		distributions						
2		Operations on One Random Variable	07					
	2.1	Functions of a random variable and their distribution and density functions.						
	2.2	Expectation, Variance and Moments of random variable.						
	2.3	Transformation of a random variable, Markov, Chebyshev and Chernoff bounds,						
		characteristic functions, moment theorem						
3		Multiple of Random Variables And Convergence	08					
	3.1	Vector random variables, Pairs of random variables, Joint CDF, Joint PDF						
		Independence, Conditional CDF and PDF, Conditional Expectation						
	3.2	One function of two random variable, two functions of two random variables; joint						
		moments, joint characteristic function, covariance and correlation-independent,						
		uncorrelated and orthogonal random variables.						
4		Sequence Of Random Variables And Convergence:	05					
	4.1	Random sequences, Limit theorems; Strong and weak laws of large numbers,						
	4.2	Central limit theorem and its significance.						
5		Random Process	10					
	5.1	Random process: Definition, realizations, sample paths, discrete and continuous						
		time processes						
	5.2	Probabilistic structure of a Random process; mean, correlation and covariance						
		functions, stationarity of random process.						
	5.3	Ergodicity, Transmission of WSS random process through LTI system						
	5.4	Spectral analysis of random processes, power density spectrum bandwidth, cross-						
		power density spectrum.						
	5.5	Gaussian and Poisson random process						
6		Markov Chains And Introduction To Queuing Theory	12					
	6.1	Markov processes						
	6.2	Discrete Markov chains, The n-step transition probabilities, steady state						
		probabilities.						
	6.3	Introduction to Continuous time Markov chains.						
	6.4	Classifications of states.						
	6.5	Markovian models						
	6.6	Birth and death queuing models						
	6.7	Steady state results						
	6.8	Single and Multiple server Oueuing models						
	6.9	Finite source models						
	6.10	Little's formula						
		Total	52					
L								

TE Electronics and Telecommunication Engineering (R 2012) Page 14

- 1. Alberto Leon Garcia, "Probability And Random Processes For Electrical Engineering", second edition Low price edition Pearson education.
- 2. Miller, "Probability And Random Processes-With Applications to Signal Processing and Communication", first edition 2007, Elsevier.
- 3. Papoulis and S. Unnikrishnan Pillai, "*Probability, Random Variables and Stochastic Processes*," Fourth Edition, McGraw Hill.
- 4. H. Stark and J. Woods, "Probability and Random Processes with Applications to Signal Processing," Third Edition, Pearson Education.
- 5. Hwei Hsu, "Probability Random Variable,s Random Process, Schaulm's Outlines, Tata McGraw Hill, 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.