Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total
						Practical		
ETC504	RF Modeling and Antennas	04			04		1	04

Course	Course Name	Examination Scheme							
Code		Theory Marks			Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC504	RF Modeling	20	20	20	80	-	-	-	100
	and Antennas								

Course Pre –requisite: : ETC 404: Wave Theory and Propagation

Course Objective: To teach students

- Design of different types of passive filters used for radio frequency application.
- Radiation phenomena and pattern of various antennas.
- The various characteristics of different types of antennas.

Course Outcome: On Completion of this course Student will be able to

- Analyze and design RF Filters
- Analyze the radiation mechanisms of antennas
- Demonstrate knowledge of antennas in communication systems. Ability to discriminate between antennas on the basis of their electrical performance.
- Discriminate various antennas on the basis of their electrical performance.

Module No.		Topics	Hrs.				
1.		Behavior of Active and Passive Components in RF range	04				
	1.1	Frequency Spectrum, hazards of Electromagnetic Radiations, and fundamentals of					
		radio frequency design					
	1.2	High Frequency behavior, equivalent circuit and frequency response of resistor,					
		capacitor, inductor, diode, BJT, and FET					
	1.3	Characteristics, structure and applications of coaxial line, stripline, microstrip line,					
		and coplanar lines					
2		Filter Design					
	2.1	Analysis of infinite periodic structures terminated Periodic structures, k-β diagrams and wave velocities.					
	2.2	Image Parameter Method: Image impedances and transfer functions for two port					
		networks, constant-k filter sections, m-derived filter sections, and composite filters					
	2.3	Insertion Loss Method: Characterization by power loss ratio, maximally flat, equal					
		ripple, and linear phase low pass filter prototype.					
	2.4	Filter transformations: impedances frequency scaling and hand ness and hand ston					
	2.4	Filter transformations: impedances, frequency scaling, and band pass and band stop					
2	2.5	Richard's transformation, Kuroda's identity, impedance, and admittance inverters Fundamentals of Antenna	1.4				
3	2.1		14				
	3.1	Conceptual understanding and radiation mechanism					
	3.2	Fundamental Parameters of Antennas: Radiation pattern, radiation power density,					
		radiation intensity, beam width, directivity, antenna efficiency, gain, beam efficiency,					
		bandwidth, input impedance, antenna radiation efficiency, antenna vector effective					
	2.2	length and equivalent areas, maximum directivity and maximum effective areas.					
	3.3	Friss transmission equation, antenna temperature					
	3.4	Vector potential A for an electric current source J, vector potential F for an magnetic					
		current source M, electric and magnetic fields for electric J and Magnetic M current					
4		sources, and concept of near and far field radiation. Wire Antennas					
4	4.1	Infinitesimal dipole and small dipole: Radiation field, near field, far field	10				
	4.1	directivity, region separation					
	4.2	Finite Length dipole: Basic parameters of half wavelength dipole, folded dipole					
	4.3	Monopole antenna					
	4.4	Ground Effects					
	4.5	Linear elements near or on infinite perfect conductors					
	4.6						
5	4.0	Loop antennas: Basic parameters	04				
3	5.1	Antenna Arrays: Linear arrays, planner arrays, and circular arrays	U4				
	5.1	· · · · ·					
	5.2	Array of two isotropic point sources, non-isotropic sources Principle of pattern multiplication					
		Principle of pattern multiplication,					
	5.4	Linear arrays of n elements, broadside, radiation pattern, directivity, beam width and					
	<i>E F</i>	null directions, array factor Antanna analysis using Rinomial Dolph Tashahysahaff, Vasi Ilda antanna					
	5.5	Antenna analysis using Binomial, Dolph-Tschebyscheff, Yagi Uda antenna	ΛΩ				
6	(1	Special types of antennas Engageness Independent Antennas I og nesiedie end belied entennas	08				
	6.1	Frequency Independent Antennas: Log periodic and helical antennas					
	1	Microstrip Antennas: Characteristics, applications and limitations					
	(2	Deflection Andrews and House Andrews Cl. 11 11 11					
	6.2	Reflector Antennas and Horn Antennas: Characteristics, applications and limitations					

Recommended Books:

- 1. David M Pozar, "*Microwave Engineering*", John Wieley and Sons, Inc. Hobokenh, New Jersey, Fourth Edition, 2012
- 2. Costantine A. Balanis, "Antenna Theory Analysis And Design", John Wiley Publication
- 3. John D. Kraus, "Antennas", Tata McGraw Hill publication
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill, New Delhi, Second Edition, 2009
- 5. Reinhold Ludwig and Pavel Bretchko, "RF Circuit Design", Pearson Education Asia.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules