Course	Course Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ETC505	Integrated	04			04			04
	Circuits							

Course	Course	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Avg. of Test	Exam				
		1	2	1 and Test 2					
ETC505	Integrated	20	20	20	80				100
	Circuits								

Course Pre-requisite:

- FEC105: Basic Electrical & Electronics Engineering
- ETC302: Analog Electronics-I
- ETC303: Digital Electronics
- ETC402: Analog Electronics-II

Course Objectives: To teach students

- Fundamentals of analog and digital integrated circuits.
- Design methodologies using practical integrated circuits.
- The application areas of integrated circuits.

Course Outcomes: After successful completion of the course student will be able to

- Understand the fundamentals and areas of applications for the Integrated Circuits.
- Analyze important types of integrated circuits of day-to-day requirements.
- Demonstrate the ability to design practical circuits that perform the desired operations.
- Understand the differences among theoretical, practical & simulated results in integrated circuits.
- Choose the appropriate integrated circuit modules to build a given application.

Module		Topics			
No.					
1.		Review of Operational Amplifier	04		
	1.1	Operational amplifier overview: parameters, open loop and closed loop			
		configurations			
2		Applications of Operational Amplifier	12		
	2.1	Amplifiers: Current amplifier, difference amplifier, instrumentation amplifier,			
		and programmable gain amplifier			
	2.2	Converters: Current to voltage converters, voltage to current converters,			
		generalized impedance converter, voltage to frequency converter, frequency to			
	2.2	A sting Filterry Second order esting finite and infinite gain law page high page			
	2.3	Active Filters: Second order active finite and infinite gain low pass, high pass,			
		band pass and band reject inters			
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,			
		Quadrature oscillator			
3		Non-Linear Applications of Operational Amplifier	10		
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing			
		detector, window detector and level detector			
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger, and			
	2.2	adjustable threshold levels			
	3.3	duty avala modulation			
	31	Provision Postifiers: Half wave full wave and applications			
	3.4	Peak detectors, sample and hold circuits			
1	5.5	Spacial Purpose Integrated Circuits	08		
-	41	Functional block diagram working design and applications: Timer 555	00		
	42	Functional block diagram, working and applications: VCO 566 PLL 565	1		
		multiplier 534, waveform generator XR 2206, power amplifier LM380			
5		Voltage Regulators	08		
_	5.1	Functional block diagram, working and design of three terminal fixed (78XX,			
		79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.			
	5.2	Functional block diagram, working and design of general purpose 723 (LVLC,			
		LVHC, HVLC and HVHC) with current limit and current fold-back protection,			
		Switching regulator topologies, Functional block diagram and working of LT1070			
		monolithic switching regulator			
6		Counters, Shift Registers and ALU (Logic Diagram and applications)	10		
	6.1	MSI Counters: Ripple counters (7490 decade, 7492 modulus-12, 7493 4-			
		bitbinary), synchronous counters (74162 decade, 74163 4-bit binary, 74169 4-bit			
		up/down binary)			
	6.2	MSI Shift Registers: /4164 serial input parallel output, 74166 parallel input			
		serial output, /4191 serial input serial output, /4194 universal shift register			
	6.3	Arithmetic Logic Unit: /4181 ALU	50		
		1 otal	52		

Recommended Books:

- 1. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", Tata McGraw Hill, 3rd Edition
- 2. John F. Wakerly, "Digital Design Principles & Practices", Pearson Education, 3rd Edition
- 3. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- 4. D. Roy Choudhury and S. B. Jain, "*Linear Integrated Circuits*", New Age International Publishers, 4th Edition
- 5. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition
- 6. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition
- 7. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition
- 8. J. G. Graeme, G. E. Tobey and L. P. Huelsman, "*Operational Amplifiers- Design & Applications*", New York: McGraw-Hill, Burr-Brown Research Corporation

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules