Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC601	Digital	04			04			04	
	Communication								

Course	Course Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1					
				and					
				Test 2					
ETC601	Digital	20	20	20	80	-	-	-	100
	Communication								

Pre-requisite:

- ETC405 Signal and System,
- ETC502 Analog Communication,
- ETC503 Random Signal Analysis

Course Objective:

- Aim is to identify the functions of different components
- Learn about theoretical bounds on the rates of digital communication system and represent a digital signal using several modulation methods
- Draw signal space diagrams, compute spectra of modulated signals and apply redundancy for reliable communication.

Course Outcome: At the end of course, student will be able to :

- Understand the basics of information theory and coding techniques.
- Determine the minimum number of bits per symbol required to represent the source and the maximum rate at which a reliable communication can take place over the channel.
- Describe and determine the performance of different waveform techniques for the generation of digital representation of signals.
- Determine methods to mitigate inter symbol interference in baseband transmission system.
- Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel.
- Understand various spreading techniques and determine bit error performance of various digital communication systems.

Module		Topics	Hrs.			
No.						
1.		Information theory and source coding	6			
	1.1	Block diagram and sub-system description of a digital communication system,				
		measure of information and properties, entropy and it's properties	-			
	1.2	Source Coding, Shannon's Source Coding Theorem, Shannon-Fano Source Coding,				
		Huffman Source Coding				
	1.3	Differential Entropy, joint and conditional entropy, mutual information and channel				
		capacity, channel coding theorem, channel capacity theorem				
2		Baseband Modulation and Transmission				
	2.1	Discrete PAM signals and it's power spectra				
	2.2	Inter-symbol interference, Nyquist criterion for zero ISI, sinusoidal roll-off filtering,				
		correlative coding, equalizers, and eye pattern				
3		Base band Detection	5			
	3.1	Orthogonality, representation of signals	1			
	3.2	Maximum likelihood decoding	1			
	3.3	Correlation receiver, equivalence with matched filter	1			
4		Bandpass Modulation and Demodulation	12			
	4.1	Bandpass digital transmitter and receiver model, digital modulation schemes	1			
	4.2	Generation, detection, signal space diagram, spectrum, bandwidth efficiency, and	1			
	-	probability of error analysis of:				
		Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK)Modulations, Binary				
		Phase Shift Keying (BPSK) Modulation, Quaternary Phase Shift Keying QPSK), M-				
		ary PSK Modulations, Quadrature Amplitude Modulation (QAM), Minimum Shift				
		Keying (MSK)				
	4.3	Comparison between bandwidth and bit rate, applications of digital modulation	1			
		schemes				
5		Error Control Systems	10			
	5.1	Types of error control, error control codes, linear block codes, vector spaces, vector	1			
		sub spaces, generator matrix, systematic linear block codes, parity check matrix,				
		syndrome testing ,error correction, and decoder implementation				
	5.2	Cyclic codes: Algebraic structure of cyclic codes, binary cyclic code properties,				
		encoding in systematic form, circuits for dividing polynomials, systematic encoding				
		with shift register and error detection				
	5.3	Convolution Codes: Time domain and transform domain approach, graphical	7			
		representation, code tree, trellis, state diagram, decoding methods, maximum				
		likelihood decoding, and free distance				
	5.4	Viterbi decoding, hard decision Viterbi decoding, decoding window, soft decision	1			
		Viterbi decoding, code spectra, recursive systematic codes, code transfer function,				
		and application areas				
6		Spread Spectrum	6			
	6.1	Spread Spectrum (SS) concept, PN Sequences, Direct Sequence(DS), Frequency	1			
		Hopping (FH), and Time Hopping				
	6.2	Comparison of Spread Spectrum Methods, SS Communication System, DSSS with	1			
		Coherent BPSK, Processing Gain, Probability of Error of FHSS Transmitter and				
		FHSS Receiver				
		Total	52			

TE Electronics and Telecommunication Engineering (R 2012) Page 30

Recommended Books:

- 1. Sklar B, and Ray P. K., "Digital Communication: Fundamentals and applications," Pearson, Dorling Kindersley (India), Delhi, Second Edition, 2009.
- 2. Haykin Simon, "Digital Communication Systems," John Wiley and Sons, New Delhi, Forth Edition, 2014.
- 3. H. Taub, D. Schlling, and G. Saha, "*Principles of Communication Systems*," Tata Mc-Graw Hill, New Delhi, Third Edition, 2012.
- 4. Lathi B P, and Ding Z., "*Modern Digital and Analog Communication Systems*," Oxford University Press, Forth Edition, 2009.
- 5. T L Singal, "Analog and Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2012.
- 6. P Ramakrishna Rao, "Digital Communication," Tata Mc-Graw Hill, New Delhi, First Edition, 2011.
- 7. M F Mesiya, "Contempory Communication systems", Mc-Graw Hill, Singapore, First Edition, 2013.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules