Course Code	Course	Teaching Scheme				Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ETC 605	Operating	04			04			04	
	System								

Course	Course	Examination Scheme							
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC	Operating	20	20	20	80	-	-	-	100
605	System								

Course Pre-requisite: Basic concepts of computer systems

Course Objectives:

- To introduce operating system as a resource manager, its evolutions and fundamentals.
- To help student understand concept of process and different process (linear and concurrent) Scheduling policies.
- To help student familiar with memory, file and I/O management policies.

Course Outcomes: On completing this course Student will able to:

- Understand the role of an operating system, its function and issues.
- Compare between different algorithms used for management and scheduling of processes, Memory and input-output operation.
- Appreciate the role of various productivity enhancing tools.

Module		Topics	Hrs.					
No.								
1		Fundamental of Operating System(OS)	06					
	1.1	Definition, objectives, functions, evolution, services, types, and different views of OS						
	1.2	Operating System as a resource manager, system calls, and shell	_					
	1.3	Monolithic systems, layered systems, client server model, monolithic kernel and						
		microkernel						
2		Process Management and Memory Management	10					
	2.1	Process, process creation, process control block, process states, process state transition						
		diagram	_					
	2.2	Scheduling queues and schedulers, preemptive and non- preemptive scheduling algorithms,						
		types of threads, multithreading models	_					
	2.3	Race condition, critical section, mutual exclusion, semaphores, monitors						
	2.4	Multiprogramming with fixed and variable partitions, memory allocation strategies						
	2.5	Logical and physical address space, paging and segmentation						
	2.6	Concept, performance of demand paging, page replacement algorithms.	_					
	2.7	Deadlock Problem, deadlock characterization, deadlock prevention and deadlock avoidance						
		deadlock detection and recovery	_					
3		File Management and Input Output Management	10					
	3.1	File Naming, File Structure, File Types, File Access, File Attributes, File Operations,						
		Memory Mapped Files, Implementing Files, contiguous allocation, linked list allocation,						
		indexed allocations, Inode						
	3.2	Single level directory system, Two level directory system, Hierarchical Directory System						
	3.3	Principles of Input/output H/W: I/O Devices, Device Controllers, Direct Memory Access.	_					
	3.4	Principles of Input/output S/W: Goals Of I/O S/W, Interrupt Handler, Device Driver,						
		Device Independent I/O Software	_					
	3.5	Disks : RAID levels, Disks Arm Scheduling Algorithms						
	3.6	Management of free blocks.						
4		Unix Operating System						
	4.1	History of UNIX, UNIX Goals, Unix Shell, interfaces to Unix, UNIX utility programs						
	4.2	Traditional UNIX Kernel, Modern UNIX Systems	06					
	4.3	Unix process management: Concept, Scheduling in Unix	00					
	4.4	Unix Memory management: Paging, Page replacement strategies						
	4.5	Unix file management: I-node, File allocation, I/O management						
	4.6	Unix Security measures						
5		Linux Operating System	10					
	5.1	History, Linux Processes and Thread management						
	5.2	Scheduling in Linux, Linux System calls						
	5.3	Memory management: Virtual memory, Buddy Algorithm, Page replacement policy						
	5.4	Linux File System						
	5.5	I/O management: Disk Scheduling						
	5.6	Advantages of Linux and Unix over Windows						

6		Real Time Operating System(RTOS)	10
	6.1	Introduction, Characteristics of real-time operating systems	
	6.2	Real Time task Scheduling, Modeling Timing constraints, Table-driven scheduling	
	6.3	Cyclic schedulers	
	6.4	Earliest Deadline First (EDF) scheduling	
	6.5	Rate Monotonic Algorithm(RMA)	
		Total	52

Recommended Books:

- 1. Tanenbaum, "Modern Operating Systems", IIIrd Edition, PHI
- 2. Silberschatz A., Galvin P., and Gagne G, "Operating Systems Concepts", VIIIth Edition Wiley.
- 3. William Stallings, "Operating System-Internal & Design Principles", VIth Edition, , Pearson
- 4. Rajib Mall, "Real-Time Systems: Theory and Practice," Pearson, 2008.
- 5. Maurice J. Bach, "The Design of Unix Operating System", Prentine Hall
- 6. Achyut S. Godbole, "Operating Systems", 2nd edition, Tata McGraw Hill
- 7. Richard Blum and Christine Bresnahan, "Linux Command Line & Shell Scripting", 2nd edition, Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions for 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.