Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC701	Image and Video Processing	04			04			04

Course	Course	Examination Scheme								
Code	Name	Theory Marks				Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test 2	Ave. Of	Exam					
				Test 1 and						
				Test 2						
ETC701	Image and	20	20	20	80	-	-	-	100	
	Video									
	Processing									

Course pre-requisite:

- ETC 405: Signals and Systems
- ETC 602: Discrete Time Signal Processing

Course Objectives:

- To cover the fundamentals and mathematical models in digital image and video processing.
- To develop time and frequency domain techniques for image enhancement.
- To expose the students to current technologies and issues in image and video processing.
- To develop image and video processing applications in practice.

Course outcomes: Students will be able to

- Understand theory and models in Image and Video Processing.
- Interpret and analyze 2D signals in frequency domain through image transforms.
- Apply quantitative models of image and video processing for various engineering applications.
- Develop innovative design for practical applications in various fields.

Module No.		Topics	Hrs.
1		Image Fundamentals	04
	1.1	Image acquisition, sampling and quantization, image resolution, basic	
		relationship between pixels, color images, RGB, HSI and other models	
2		Two Dimensional Transforms	06
	2.1	Discrete Fourier Transform, Discrete Cosine Transform, KL Transform, and	
		Discrete Wavelet Transform	
3		Image Enhancement	
	3.1	Spatial Domain	08
		Point Processing: Digital Negative, contrast stretching, thresholding, gray	
		level slicing, bit plane slicing, log transform and power law transform.	
		Neighborhood Processing: Averaging filters, order statistics filters, high pass	
		filters and high boost filters	
	3.2	Frequency Domain: DFT for filtering, Ideal, Gaussian and Butterworth filters	
		for smoothening and sharpening, and Homomorphic filters	
	3.3	Histogram Modeling: Histogram equalization and histogram specification	
4		Image Segmentation and Morphology	07
	4.1	Point, line and edge detection, edge linking using Hough transform and graph	
		theoretic approach, thresholding, and region based segmentation.	
	4.2	Dilation, erosion, opening, closing, hit or miss transform, thinning and	
		thickening, and boundary extraction on binary images	
5		Image Restoration:	07
	5.1	Degradation model, noise models, estimation of degradation function by	
		modeling, restoration using Weiner filters and Inverse filters	
6		Video Formation, Perception and Representation	08
	6.1	Digital Video Sampling, Video Frame classifications, I, P and B frames,	
		Notation, ITU-RBT 601Digital Video formats, Digital video quality measure.	
	6.2	Video Capture and display: Principle of colour video camera, video camera,	
		digital video	
	6.3	Sampling of video Signals: Required sampling rates, sampling in two	
		dimensions and three dimensions, progressive virus interlaced scans	
7		Two Dimensional Motion Estimation	12
	7.1	Optical Flow: 2-D motion Vs optical flow, optical flow equations, motion	
		representation, motion estimation criteria, optimization method.	
	7.2	Pixel based motion estimation: Regularization using motion smoothing	
		constraints, using multipoint neighborhood.	
	7.3	Block Matching Algorithms: Exhaustive block matching algorithms, phase	
		correlation method, Binary feature matching.	
	7.4	Multi resolution Motion Estimation: General formulation, Hierarchical	
		blocks matching Algorithms.	
		Total	52
			~_

Recommended Books:

- 1. Gonzales and Woods, "Digital Image Processing", Pearson Education, India, Third Edition,
- 2. Anil K.Jain, "Fundamentals of Image Processing", Prentice Hall of India, First Edition, 1989.
- 3. Murat Tekalp, "Digital Video Processing", Pearson, 2010.
- 4. John W. Woods, "Multidimensional Signal, Image and Video Processing", Academic Press 2012
- 5. J.R.Ohm, "Multimedia Communication Technology", Springer Publication.
- 6. A.I.Bovik, "Handbook on Image and Video Processing", Academic Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.