Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ETC702	Mobile	04			04			04	
	communication								

Course	Course Name	Examination Scheme							
Code		Theory Marks			Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC702	Mobile	20	20	20	80	-	-	-	100
	communication								

Prerequisites:

- ETC 601 Digital Communication
- ETC 603 Computer Communication and Networks

Course Objective:

- To study the concept of Mobile radio propagation, cellular system design.
- To understand mobile technologies like GSM and CDMA.
- To know the mobile communication evolution of 2G, 3G and 3 GPP in detail.
- To have overview of immerging technologies for 4 G standards.

Course Outcomes: Students will be able to:

- Understand GSM, CDMA concepts and architecture, frame structure, system capacity, services provided.
- Study of evolution of mobile communication generations 2G, 2.5G, 3G with their characteristics and limitations.
- Understand emerging technologies required for fourth generation mobile systems such as SDR, MIMO etc.
- Understand different indoor and outdoor propagation models related to losses and different types of fading.

Iodule No.		Topics					
1. 0		Fundamentals of Mobile Communication	10				
	1.1	Introduction to wire1ess communication					
	1.2	Frequency Division Multiple access, Time Division Multiple access, Spread					
		Spectrum Multiple access, Space Division Multiple access, and OFDM					
	1.3	Frequency reuse, channel assignment strategies, handoff strategies,					
		interference and system capacity, trunking and grade of service, improving the					
		capacity of cellular systems. and related design problems					
2.0		2G Technologies	13				
	2.1	GSM Network architecture, signaling protocol architecture, identifiers,					
		channels, introduction frame structure, speech coder RPE-LTP,					
		authentication and security, call procedure, handoff procedure, services and					
	2.2	features GSM evolution in GPRS and EDGE: Architecture and services offered					
	2.2	GSM evolution in GPRS and EDGE: Architecture and services offered					
=	2.3	IS-95 A& B (CDMA-1): Frequency and channel specifications of forward and					
		reverse CDMA channel, packet and frame formats, mobility and radio					
		resource management					
3.0		3G Technology	09				
	3.1	IMT-2000/UMTS: Network architecture, air Interface specification, forward					
		and reverse channels in W-CDMA and CDMA 2000, spreading and					
		modulation.					
	3.2	Cell search and synchronization, establishing a connection, hand off and					
		power control in 3G system					
4.0		3GPP LTE	08				
	4.1	Introduction and system overview					
	4.2	Frequency bands and spectrum ,network structure, and protocol structure					
_	4.3	Frame slots and symbols, modulation, coding, multiple antenna techniques					
	4.4	Logical and Physical Channels: Mapping of data on to logical sub-channels					
		physical layer procedures, establishing a connection, retransmission and					
		reliability, power control.					
5.0		Emerging Technologies for 4G	06				
	5.1	4G Introduction and vision					
	5.2	Multi antenna Technologies: MIMO; software defined radio					
	5.3	Adaptive multiple antenna techniques, radio resource management, QOS					
		requirements					
	5.4	Overview of 4G research initiatives and developments.					
6.0		Mobile Radio Propagation	06				
	6.1	Study of indoor and outdoor propagation models					
	6.2	Small scale fading and multi-path Small-scale multi-path propagation,					
		parameter of multi-path channels, types of small scale fading, Raleigh and					
		Ricean distribution,					
		Total	52				

Recommended Books:

- **1.** Theodore S. Rappaport, "Wireless Communications", Prentice Hall of India, PTR publication
- 2. Andreas Molisch, "Wireless Communications", Wiley, Student second Edition.
- 3. Vijay Garg, "Wireless Network Evolution 2G-3G", Pearson Education.
- 4. Young Kyun Kim and Ramjee Prasad, "4 G Roadmap and Emerging Communication Technologies", Artech house.:
- 5. Raj Pandya, "Mobile And Personal Communications Systems And Services", Prentice hall.
- 6. Singhal, "Wireless Communication", TMH
- 7. C.Y Lee, "Mobile Communication", Wiley

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.