Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC703	Optical	04			04			04
	Communication							
	and Networks							

Course	Course Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC703	Optical	20	20	20	80	-	-	-	100
	Communication								
	and Networks								

Pre requisites:

- ETC404 Wave Theory and Propagation
- ETC502 Analog Communication
- ETC601 Digital Communication.

Course Objective: To teach students

- Optical fiber structures wave guide, fabrication and signal degradation in fiber.
- The characteristics of optical sources and detectors.
- Link budged and optical networks, design and management.
- Study the multiplexing schemes.

Course Outcome: This course enables the students to:

- Apply the fundamental principles of optics and light wave to design optical fiber communication systems.
- Identify structures, functions, materials, and working principle of optical fibers, light sources, couplers, detectors, and multiplexers.
- Design optical fiber communication links using appropriate optical fibers, light sources, couplers, detectors, and multiplexers.
- Explore concepts of designing and operating principles of modern optical communication systems and networks.
- Apply the knowledge developed in-class to contemporary optical fiber communication research and industrial areas.

Module		Topics	Hrs.
<u>N0.</u>		Ontigal Fiber Communication Technology	10
1.	11	Block diagram advantages loss and bandwidth window ray theory transmission	10
	1.1	total internal reflection acceptance angle numerical aperture and skew rays	
	1.2	EM waves, modes in planer guide, phase and group velocities, types of fibers	
		according to refractive index profile and mode transmission.	
	1.3	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors,	
		splices.	
2		Transmission Characteristic of Optical Fiber	08
	2.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal	
		dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted	
		and dispersion flattened fibers, and non linear effects	
	2.2	Measurements of attenuation, dispersion and OTDR	
3		Optical Communication Systems	08
	3.1	Working principle and characteristics of sources (LED, LASER), and optical	
		amplifiers	-
	3.2	Working principle and characteristics of detectors (PIN, APD), noise analysis in	
		detectors, coherent and non-coherent detection, receiver structure, bit error rate of	
		optical receivers, and receiver performance.	
	3.3	Point to point links system considerations, link power budget, and rise time budget	10
4	4.1	Optical Network System Components and Optical Networks	10
	4.1	Couplers, isolators, circulators, multiplexers, filters, fiber gratings, Fabry Perot	
	4.2	SONET and SDU standards, architecture of antical transport networks (OTNs)	-
	4.2	SONET and SDH standards, architecture of optical transport networks (OTNs),	
		architectures	
	43	Operational principle of WDM WDM network elements and Architectures	1
	т.Ј	Introduction to DWDM Solitons	
5		Packet Switching and Access Networks	08
	5.1	OTDM, multiplexing and de-multiplexing. synchronization and broadcast OTDM	
		networks.	
	5.2	Network architecture overview, OTDN networks, optical access networks, and future	1
		access networks.	
6		Network Design and Management	08
	6.1	Transmission system model, power penalty-transmitter, receiver optical amplifiers,	1
		crosstalk, dispersion, wavelength stabilization.]
	6.2	Network management functions, configuration management, performance	
		management, fault management, optical safety, and service interface	
		Total	52

Recommended Books:

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication , Singapore, 4th Edition, 2012
- 3. G Agrwal, "Fiber optic communication Systems", John Wiley and Sons, 3rd Edition, New York 2014
- 4. Rajiv Ramaswami and Kumar N. Sivarajan, "*Optical Networks: A Practical Perespective*", Elsevier Publication Elsevier India Pvt.ltd, 3rd Edition, 2010
- 5. P.E.Green, "Optical Networks", Prentice Hall, 1994
- 6. Biswanath Mukherjee, "Optical Communication Networks", McGraw-Hill, 1997.
- 7. Le Nguyen Binh, "Optical Fiber Communication System: Theory and Practice with MATLAB and Simulink", CRC Press, 2010

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules