Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETC704	Microwave	04			04			04
	and Radar							
	Engineering							

Course	Course Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
ETC704	Microwave	20	20	20	80	-	-	-	100
	and Radar								
	Engineering								

Pre requisite :

- ETC 404 Wave Theory and Propagation
- ETC 504 RF Modeling and Antenna

Course Objective: To teach the students

- Radio-frequency spectrum space, microwave communication.
- Microwave principles, working of microwave devices.
- RADAR and their applications.

Course Outcome: After Completing this course student will be able to

- Analyze the microwave passive circuit components and design the tunning and matching networks.
- Identify the state of art in microwave tubes and semiconductors and their uses in real life.
- Apply the microwave devices and RADAR for industrial and scientific purposes

Module No.		Topics					
1.		Waveguides and Microwave Components					
	1.1	Frequency bands and characteristics of microwaves					
	1.2	Rectangular and circular waveguides, mode analysis					
	1.3	Resonators, reentrant cavities, scattering parameters, tees, hybrid ring,					
		directional couplers, phase shifters, terminations attenuators, ferrite devices					
		such as isolators, gyrators, and circulators.					
2		Impedance Matching and Tuning					
	2.1	Lumped element matching					
	2.2	Single stub tuning, double stub tuning, triple stub tuning					
	2.3	Quarter wave transformer					
3		Generation and Amplification of Microwaves	10				
	3.1	Two Cavity Klystron and Reflex Klystron					
	3.2	Helix Travelling Wave Tube and Backward Wave Oscillator					
	3.3	Cross Field Amplifier, Cylindrical Magnetron, and Gyrotrons					
4		Semiconductor Microwave Devices (construction, working, equivalent circuit	10				
		and performance characteristics)					
	4.1	Varactor, PIN, Tunnel, Point Contact, Schottky Barrier, Gunn, IMPATT,					
		TRAPATT, and BARITT.					
	4.2	BJT, Hetro junction BJT, MESFET, and HEMT					
	4.3	Parametric Amplifiers	0.0				
5	- 1	RADAR	08				
	5.1	Basics of RADAR and RADAR range equation					
	5.2	Types of RADAR: Pulsed, Continuous wave and FMCW, Doppler, M11, and Phasad Array					
	53	Tupes of displays and Clutter					
	5.5 5.4	Tracking RADAR : Monopulse Conical Sequentiallobing					
6	3.4	Microwaya Applications	06				
U	61	Microwave heating and bio-medical applications	00				
	6.2	Remote sensing RADAR MSTRADAR radiometer instrumentation landing					
	0.4	system and RADAR based navigation					
		Total	52				

Recommended Books:

- 1. David M Pozar, "*Microwave Engineering*", John Wieley & Sons,Inc. Hobokenh,New Jersey, Fourth Edition, 2012.
- 2. Samuel YLiao, "Microwave Devices and Circuits", Pearson Education, Third Edition
- 3. Merill Skolnik, "Introduction to RADAR Systems", TataMcgraw Hill, Third Edition
- 4. Annapurna Das and Sisir K Das, "*Microwave Engineering*", Tata McGraw Hill,New Delhi, Second Edition, 2009
- 5. K. T. Matthew, "Microwave Engineering", Wieleyindia, ,2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules