Subject Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETE704	CMOS Analog and Mixed Signal VLSI Design	04	02		04	01		05

Course	Course	Examination Scheme							
Code	Name		Theory Marks				Practical	Oral	Total
		Internal assessment			End Sem. Exam	Work			
		Test	Test	Avg. of					
		1	2	Test 1 and					
				Test 2					
ETE704	CMOS	20	20	20	80				100
	Analog and								
	Mixed								
	Signal VLSI								
	Design								

Course Pre-requisite:

- ETC302: Analog Electronics I
- ETC303. Digital Electronics
- ETC402: Analog Electronics II
- ETC 505: Integrated Circuits
- ETC 606 :VLSI Design

Course Objectives: To teach the students

- Importance of CMOS and Mixed Signal VLSI design in the field of Electronics and Telecommunication.
- Underlying methodologies for analysis and design of fundamental CMOS Analog and Mixed signal Circuits like Current and Voltage references, Single stage Amplifiers, Operational Amplifiers, Data Converters.
- The issues associated with high performance Mixed Signal VLSI Circuits.

Course Outcomes: After successful completion of the course student will be able to

- Differentiate between Analog, Digital and Mixed Signal CMOS Integrated Circuits.
- Analyze and design current sources and voltage references for given specifications.
- Analyze and design single stage MOS Amplifiers.
- Analyze and design Operational Amplifiers.
- Analyze and design data converter circuits.

Module		Topics					
No.							
1		Fundamental Analog Building Blocks	08				
	1.1	MOS Transistor as sampling switch, active resistances, current source and sinks,					
		current mirror and current amplifiers					
	1.2	Voltage and current references, band gap voltage reference, Beta-Multipler					
		referenced self-biasing					
2		Single Stage MOS Amplifiers	14				
	2.1	Common-source stage (with resistive load, diode connected load, current-source					
		load, triode load, source degeneration), source follower, common-gate stage,					
		cascode stage, folded cascade stage, simulation of CMOS amplifiers using SPICE					
	2.2	Single-ended operation, differential operation, basic differential pair, large-signal					
		and small-signal behavior, common-mode response, differential pair with MOS					
		loads, simulation of differential amplifiers using SPICE					
	2.3	Noise characteristics in the frequency and time domains, thermal noise, shot noise,					
		flicker noise, popcorn noise, noise models of IC components, representation of noise					
		in circuits, noise in single-stage amplifiers (CS, CD and CG stages), noise in					
		differential pairs, noise bandwidth, noise figure, noise temperature.					
3		MOS Operational Amplifiers Desing	08				
	3.1	Trans-conductance operational amplifier (OTA), two stage CMOS operational					
		amplifier					
	3.2	CMOS operational amplifiers compensation, cascade operational amplifier and					
		folded cascade					
4		Non-Linear & Dynamic Analog Circuits	08				
	4.1	Switched capacitor amplifiers (SC), switched capacitor integrators, first and second					
		order switched capacitor circuits.					
	4.2	Basic CMOS comparator design, adaptive biasing, analog multipliers					
5		Data Converter Fundamentals	06				
	5.1	Analog versus digital discrete time signals, converting analog signals to data signals,					
		sample and hold characteristics					
	5.2	DAC specifications, ADC specifications, mixed-signal layout issues					
6		Data Converter Architectures	08				
	6.1	DAC architectures, digital input code, resistors string, R-2R ladder networks,					
		current steering, charge scaling DACs, Cyclic DAC, pipeline DAC,					
	6.2	ADC architectures, flash, 2-step flash ADC, pipeline ADC, integrating ADC, and					
		successive approximation ADC					
Total							

Recommended Books:

- 1. B. Razavi, "Design of Analog CMOS Integrated Circuits", first edition, McGraw Hill,2001.
- 2. Harry W. Li and David E Boyce, "CMOS Circuit Design, Layout, Stimulation", PHI Edn, 2005
- 3. P.E.Allen and D R Holberg, "CMOS Analog Circuit Design", second edition, Oxford University Press, 2002.
- 4. Gray, Meyer, Lewis and Hurst "Analysis and design of Analog Integrated Circuits", 4th Edition Willey International, 2002

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules