Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ETS	Applied	04	--	01	04	-	01	05
301	Mathematics III							

Subject Code	Subject Name	Examination Scheme							
		Theory Marks				Term Work	Practical	Oral	Total
		Internal assessment			End Sem. Exam				
		$\begin{array}{\|c\|} \hline \text { Test } \\ 1 \end{array}$	$\begin{gathered} \text { Test } \\ 2 \end{gathered}$	Avg. Of Test 1 and Test 2					
$\begin{aligned} & \text { ETS } \\ & 301 \end{aligned}$	Applied Mathematics III	20	20	20	80	25	--	--	125

Course pre-requisite:

FES 101: Applied Mathematics I
FES 201: Applied Mathematics II

Course objectives:

- To provide students with a sound foundation in Mathematics and prepare them for graduate studies in Electronics and Telecommunication Engg.
- To provide students with mathematics fundamental necessary to formulate, solve and analyze engg. problems.
- To provide opportunity for students to work as part of teams on multi disciplinary projects.

Course outcomes:

- Students will demonstrate basic knowledge of Laplace Transform. Fourier series, Bessel Functions, Vector Algebra and Complex Variable.
- Students will demonstrate an ability to identify formulate and solve electronics and telecommunication Engg. problem using Applied Mathematics.
- Students will show the understanding of impact of Engg. Mathematics on Telecom Engg.
- Students who can participate and succeed in competitive exams like GATE, GRE.

Module No.	Unit No.	Topics	Hrs.
1.0		Laplace Transform	12
	1.1	Laplace Transform (LT) of Standard Functions: Definition. unilateral and bilateral Laplace Transform, LT of $\sin (a t), \cos (a t)$, $e^{a t}, t^{n}, \sinh (a t), \cosh (a t)$, erf(t), Heavi-side unit step, dirac-delta function, LT of periodic function	
	1.2	Properties of Laplace Transform: Linearity, first shifting theorem, second shifting theorem, multiplication by t^{n}, division by t, Laplace Transform of derivatives and integrals, change of scale, convolution theorem, initial and final value theorem, Parsavel's identity	
	1.3	Inverse Laplace Transform: Partial fraction method, long division method, residue method	
	1.4	Applications of Laplace Transform: Solution of ordinary differential equations	
2.0		Fourier Series	10
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae	
	2.2	Fourier Series of Functions: Exponential, trigonometric functions, even and odd functions, half range sine and cosine series	
	2.3	Complex form of Fourier series, orthogonal and orthonormal set of functions, Fourier integral representation	
3.0		Bessel Functions	08
	3.1	Solution of Bessel Differential Equation: Series method, recurrence relation, properties of Bessel function of order $+1 / 2$ and -1/2	
	3.2	Generating function, orthogonality property	
	3.3	Bessel Fourier series of functions	
4.0		Vector Algebra	
	4.1	Scalar and Vector Product: Scalar and vector product of three and four vectors and their properties	12
	4.2	Vector Differentiation: Gradient of scalar point function, divergence and curl of vector point function	
	4.3	Properties: Solenoidal and irrotational vector fields, conservative vector field	
	4.4	Vector Integral: Line integral, Green's theorem in a plane, Gauss' divergence theorem, Stokes' theorem	
5.0		Complex Variable	10
	5.1	Analytic Function: Necessary and sufficient conditions, Cauchy Reiman equation in polar form	
	5.2	Harmonic function, orthogonal trajectories	
	5.3	Mapping: Conformal mapping, bilinear transformations, cross ratio, fixed points, bilinear transformation of straight lines and circles	
		Total	52

Text books:

1. P. N. Wartikar and J. N. Wartikar, "A Text Book of Applied Mathematic", Vol. I \& II, Vidyarthi Griha Prakashan
2. A. Datta, "Mathematical Methods in Science and Engineering", 2012
3. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication

Reference Books:

1. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
2. B. V. Ramana, "Higher Engineering Mathematics", Tata Mc-Graw Hill Publication
3. Wylie and Barret, "Advanced Engineering Mathematics", Tata Mc-Graw Hill 6th Edition
4. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley \& Sons, Inc
5. Murry R. Spieget, "Vector Analysis", Schaum's outline series, Mc-Graw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. The students need to solve total 4 questions.
3. Question No. 1 will be compulsory and based on entire syllabus.
4. Remaining question (Q. 2 to Q .6) will be selected from all the modules.

Term Work/ Tutorial:

At least 08 assignments covering entire syllabus must be given during the 'class wise tutorial'. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades will be converted to marks as per 'credit and grading system' manual and should be added and averaged. Based on above scheme grading and term work assessment should be done.

