Subject Code	Subject Name	Т	eaching Sche	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW	Tutorial	Total	
EXC304	Circuit Theory	04			04			04	

Subject	Subject	Examination Scheme							
Code	Name		Tl	heory Marks	;	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. of 2	Exam				
		1	2	Tests					
EXC304	Circuit	20	20	20	80				100
	Theory								

Course Pre-requisite:

FEC 105: Basic Electrical and Electronics Engineering

Partial fraction expansion, matrices, determinants calculus and differential equations,

Course Objectives:

- 1. To analyze the circuits in time and frequency domain
- 2. To study network functions, inter relationship among various circuit parameters, solve more complex network using these parameters.
- 3. To analyze and synthesize circuits and to become familiar with the propagation of signals/wave through transmission lines.

Course Outcome:

- 1. Through test and laboratory exercises, students will be able to apply their knowledge in solving complex circuits.
- 2. Students will be able to evaluate the time and frequency response which is useful in understanding behavior of electronic circuits and control system.
- 3. Student will be able to understand how the power or information in terms of electromagnetic energy is transmitted through the transmission lines and importance of impedance matching.

Module	Unit	Topics	Hrs
No.	No.		
1.0		Analysis of Electrical Circuits	09
	1.1	Analysis of DC circuits: Analysis of circuits with and without controlled sources using	
	1.0	generalized loop, node matrix, Superposition, Thevenin, Norton, Millman theorems	-
	1.2	Analysis of coupled circuits: Sell and mutual inductances, coefficient of coupling, Dot	
	13	Series and parallel resonance circuits: Selectivity handwidth quality factor	
2.0	1.0	Time and Frequency Domain Analysis	12
	2.1	Time domain analysis of R-L and R-C circuits: Forced and natural response, time	
		constant, initial and final values	
		Solution using first order equation for standard input signals: Transient and steady	
		state time response, solution using universal formula	-
	2.2	Time domain analysis of R-L-C circuits: Forced and natural response, effect of	
		damping Solution using second order equation for standard input signals. Transient and standy	
		solution using second order equation for standard input signals: Transient and steady	
	2.3	Frequency domain analysis of RLC circuits: S-domain representation, applications of	
		Laplace Transform in solving electrical networks, driving point and transfer function,	
		Poles and Zeros, calculation of residues by analytical and graphical method, frequency	
		response	
3.0		Synthesis of RLC Circuits	06
	3.1	Positive real functions: Concept of positive real function, testing for Hurwitz	
		polynomials, testing for necessary and sufficient conditions for positive real functions	-
	3.2	Synthesis of RC, RL, LC circuits: Concepts of synthesis of RC, RL, LC driving point functions (numerical problems not expected on 2.2)	
40		Two Port Networks	08
4. 0	41	Deremeters: Open Circuit Short Circuit Transmission and Hybrid perameters	00
	4.1	relationships among parameters reciprocity and symmetry conditions	
	4.2	Series/parallel connection: T and Pi representations, interconnection of Two-Port	
		networks,	
5.0		Flirters and attenuators	08
	5.1	Basic filter circuits: Low pass, high pass, band pass and band stop filters, transfer	
		function, frequency response, cutoff frequency, bandwidth, quality factor, attenuation	
		constant, phase shift, characteristic impedance	-
	5.2	Concept of design and analysis of filters: Constant K, M derived and composite filters	
	5 2	(numerical problems not expected on 5.2)	-
	5.5	factor) and design concepts (numerical problems not expected on 5.3)	
6.0		Transmission Lines	09
	6.1	Power frequency lines: Representation losses and efficiency in power lines effect of	
		length, calculation of inductance and capacitance (numerical problems not expected)	
	6.2	Radio frequency lines: Representation, propagation constant, attenuation constant, phase	
		constant, group velocity, input impedance, characteristic impedance, reflection	1
		coefficient, standing wave ratio, VSWR, ISWR, S-parameters	
	6.3	Smith Chart: Impedance locus diagram, impedance matching	
		Total	52

Recommended Books:

- 1. Franklin F Kuo, "Network Analysis and Synthesis", Wiley Toppan,
- 2. M E Van Valkenburg, "Network Analysis", Prentice-Hall of India Pvt Ltd, New Delhi
- 3. K V V Murty and M S Kamth, "Basic Circuit Analysis", Jaico Publishing house, London
- 4. A. Chakrabarti, "Circuit Theory", Dhanpat Rai and Co., New Delhi
- 5. Reinhold Ludwig and Pavel Bretchko, "RF Circuit Design", Pearson Education, Asia
- 6. Joseph J. Carr, "Secrets of RF Circuit Design", Tata McGraw-Hill, New Delhi

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5: Weightage of marks will be as per Blueprint.