Subject Code	Subject Name	Teaching Scheme (Hrs)				Credits A	Assigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC 406	Electrical	3			3			03
	Machines							

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment End Sem.			Work				
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
EXC 406	Electrical	15	15	15	60		-	-	75
	Machines								

Course Objective: To understand performance, working of Electrical Machines and their characteristics etc.

Expected Outcome:

- 5. Students will be able to understand electrical motors and their working principles
- 6. Students will be able to understand brushless drives
- 7. Students will be able to understand special types of motors such as stepper motor and applications

Module No.	Unit No.	Contents					
1.0	110.	DC Machines	08				
	1.1	Construction: principle of working, MMF and flux density waveforms,					
		significance of commutator and brushes in DC machine,					
	1.2	EMF equation: and Torque equation, characteristics of DC Motors,					
	1.3	Starters for shunt and series motors					
	1.4	Speed Control (Armature voltage control and field control using block diagrams)					
2.0		Three phase Induction Motor	08				
	2.1	Construction: Working principle of squirrel cage induction motor,					
	2.2	Equivalent circuit: Equivalent circuit development, torque speed characteristics,					
		power stages, no load and blocked rotor test					
	2.3	Speed control: Classify different methods, stator voltage control using Triac,					
		V/f control using converter inverter scheme (only block diagram)					
	2.4	Starting methods: Classification and working of different methods, high torque					
		motors					
3.0		Single phase Induction Motor	04				
	3.1	Working Principle: Double field revolving theory					
	3.2	Staring methods: Split phase, capacitor start, capacitor start and run, shaded pole,					
	3.3	Equivalent circuit: Determination of equivalent circuit parameters by no load and					
		block rotor test.					
4.0		Permanent Magnet Synchronous Motors	04				
	4.1	Working principle, EMF and torque equations					
5.0		Brushless DC Motors	04				

	5.1	Unipolar brushless DC motor, Bipolar brushless DC motor, speed control, important features and applications	
6.0		Stepper Motors:	06
	6.1	Constructional features, working principle	
	6.2	Variable reluctance motor: Single and multi-stack configurations, characteristics, drive circuits	
7.0		Switched Reluctance Motors:	04
	7.1	Constructional features, working principle, operation and control requirements	
		Total	38

Recommended Books:

- 1. Bimbhra P.S., Electric Machinery, Khanna Publisher,
- 2. G.K. Dubey, Fundamentals of electrical drives, Narosa Publications
- 3. Nagrath I.J., Kothari D.P., Electric Machines, TMH Publisheations
- 4. A.E. Fitzgerald, Kingsly, Stephen., Electric Machinery, McGraw Hill
- 5. M.G. Say and E. O. Taylor, *Direct current machines*, Pitman publication
- 6. Ashfaq Husain, Electric Machines, Dhanpat Rai and co. publications
- 7. M.V. Deshpande, Electric Machines, PHI
- 8. Smarajit Ghosh, Electric Machines, PEARSON

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3: Question No.1 will be compulsory and based on entire syllabus.
- 4: Remaining question (Q.2 to Q.6) will be selected from all the modules.
- 5: Weightage of marks will be as per Blueprint.