Total 110 110 110 440 100 50 50 750									
	Total	110	110	110	440	100	50	50	750

Subject Code	Subject Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC601	Basic VLSI	04			04			04	
	Design								

Subject	Subject	Examination Scheme							
Code	Name			Theory Marks	Term	Practical	Oral	Total	
		Ir	nternal	assessment	End Sem.	Work			
		Test	Test	Avg. of Test 1	Exam				
		1	2	and Test 2					
EXC601	Basic VLSI	20	20	20	80				100
	Design								

Course Pre-requisite:

- EXC302: Electronic Devices
- EXC303: Digital Circuits and Design
- EXC402: Discrete Electronic Circuits
- EXC502: Design With Linear Integrated Circuits

Course Objectives:

- 1. To teach fundamental principles of VLSI circuit design and layout techniques
- 2. To highlight the circuit design issues in the context of VLSI technology

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate a clear understanding of choice of technology and technology scaling
- 2. design MOS based circuits and draw layout
- 3. realize logic circuits with different design styles
- 4. demonstrate a clear understanding of system level design issues such as protection, timing and power dissipation

Module	Unit	Topics	Hrs.
No.	No.		
1		Technology Trend	6
	1.1	Technology Comparison: Comparison of BJT, NMOS and CMOS technology	
	1.2	MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models,	
		MOSFET capacitances	
2		MOSFET Inverters	10
	2.1	Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power	
		dissipation) of resistive load and CMOS inverter, comparison of all types of MOS	
		inverters, design of CMOS inverters, CMOS Latch-up	
	2.2	Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using	
		equivalent CMOS inverter	
3		MOS Circuit Design Styles	10
	3.1	Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo	
		NMOS, Domino, NORA, Zipper, C ² MOS, sizing using logical effort	
	3.2	Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder	
		using above design styles	
4		Semiconductor Memories	08
	4.1	SRAM: ROM Array, SRAM (operation, design strategy, leakage currents,	
		read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents,	
		refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND	
		flash)	
	4.2	Peripheral Circuits: Sense amplifier, decoder	
5		Data Path Design	08
	5.1	Adder: Bit adder circuits, ripple carry adder, CLA adder	
	5.2	Multipliers and shifter: Partial-product generation, partial-product accumulation,	
		final addition, barrel shifter	
6		VLSI Clocking and System Design	10
	6.1	Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2	Low Power CMOS Circuits: Various components of power dissipation in CMOS,	
		Limits on low power design, low power design through voltage scaling	
	6.3	IO pads and Power Distribution: ESD protection, input circuits, output circuits,	
		simultaneous switching noise, power distribution scheme	
	6.4	Interconnect: Interconnect delay model, interconnect scaling and crosstalk	
		Total	52

Recommended Books:

- 1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.
- 2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.
- 3. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.
- 4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.
- 5. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.
- 6. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.