Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC604	Power Electronics I	04			04			04

Subject	Subject Name	Examination Scheme							
Code			T	heory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Avg. of	Exam				
		1	2	Test 1					
				and					
				Test 2					
EXC604	Power	20	20	20	80				100
	Electronics I								

Course Pre-requisite:

• EXC302: Electronic Devices

Course Objectives:

- 1. To teach power electronic devices and there characteristics.
- 2. To highlight power electronic based rectifier, inverter and chopper.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Discuss tradeoffs involved in power semiconductor devices.
- 2. Analyze different types of rectifier and inverter.
- 3. Carry out verifications of issues involved in rectifier via simulations

Module	Unit	Contents	Hrs.
No.	No.		4.0
1		Silicon Controlled Rectifiers	10
	1.1	Principle of operation of SCR, static and dynamic characteristics, gate characteristics	
	1.2	Methods of turning on (type of gate signal), firing circuits (using R, R-C,	
		UJT),commutation circuit	
	1.3	Protection of SCR	
2		Other Switching Devices	08
	2.1	Principle of operation, characteristics, rating and applications of: TRIAC, DIAC, GTO, MOSFET, IGBT and power BJT	
	2.2	Driver circuits for power transistors	
3		*Controlled Rectifiers	12
	3.1	Half wave controlled rectifiers with R, R-L load,	
	3.2	Full wave controlled rectifiers, half controlled and fully controlled rectifiers	
	2.2	with R, R-L load (effect of source inductance not to be considered)	
	3.3	Single phase dual converter, three phase half controlled and fully controlled rectifiers with R load only	
		*Numerical based on calculation of output voltage	
4		*Inverters	10
7	4.1	Introduction, principle of operation, performance parameters of:	10
	7.1	Single phase half / full bridge voltage source inverters with R and R-L load, three phase bridge inverters (120° and 180° conduction mode) with R and R-L load	
	4.2	Voltage control of single phase inverters using PWM techniques, harmonic neutralization of inverters, applications *Numerical with R load only	
5		Choppers	6
	5.1	Basic principle of step up and step down choppers	
	5.2	DC-DC switching mode regulators: Buck, Boost, Buck-Boost, Cuk	
		regulators, (CCM mode only)	
6		AC Voltage Controllers	4
	6.1	Principle of On-Off control, principle of phase control, single phase	
		bidirectional control with R and RL load	
7		Cycloconvertor	2
	7.1	Introduction, single phase and three phase Cyclo-converters, applications	
		Total	52

Recommended Books:

•

- 1. M. H. Rashid, "Power Electronics", Prentice-Hall of India
- 2. Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication
- 3. Ramamurthy, "Thyristors and Their Applications"
- 4. Alok Jain, "Power Electronics and its Applications", Penram International Publishing (India) Pvt. Ltd.
- 5. Vedam Subramanyam, "Power Electronics", New Age International
- 6. Landers, "Power Electronics", McGraw Hill
- 7. M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill
- 8. P. C. Sen, "Modern Power Electronics", Wheeler Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.