Subject Code	Course Name	Teaching Scheme	Credits Assigned						
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total	
						Practical			
EXC703	Power	04			04			04	
	Electronics								
	II								

Course	Course	Examination Scheme								
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total	
		Internal assessment			End Sem. Exam	Work				
		Test 1	Test 2	Avg. of Test 1 and Test 2						
EXC703	Power Electronics II	20	20	20	80				100	

Course Pre-requisites:

- EXC 604: Power Electronics I
- EXC 404: Principles of Control Systems

Course Objectives:

- 1. To enhance and expand the ideas of students for more complex power electronic systems.
- 2. To teach the analytical methods in power electronic systems.
- 3. To expose the students to various applications of power electronics in various electronics equipments and drives.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronics systems in engineering fields
- 4. Simulate and analyze power electronic systems

Module No.	Unit No.	Topics	Hrs.					
1	140.	Rectifiers and Inverters:						
	1.1	Rectifiers and Inverters: Effect of source inductance in 1-phase and 3-phase rectifiers, distortion in line current						
		waveforms, voltage distortion for diode and SCR based rectifiers						
	1.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique						
		for 3-phase voltage source inverters, hysteresis control.						
2		DC-DC Converters:	10					
	2.1	Average model, linearized and transfer function models, state-space average models of basic buck, boost and buck-boost converters, Feedback control of these converters (PI and PID).						
3		Power Electronic Applications	06					
	3.1	Use of power electronic systems in SMPS, Battery charging systems, UPS and						
		Induction heating.						
4		Power Electronic Applications in DC Drives						
	4.1	Various schemes of DC motor speed control, single-phase half-wave semi converter &						
		full converter drive for separately excited DC motor, Dynamic and Regenerative						
		braking of DC motor						
5		Power Electronic Applications in AC Drives	14					
	5.1	Introduction to speed control of three-phase induction motor methods:						
		i) Stator voltage						
		ii) Variable frequency						
		iii) Rotor resistance						
		iv) V/f control						
		v) Regenerative braking.						
		Total Total	52					

Recommended Books:

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. By M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 3. Mohan, Undeland and Riobbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.
- 7. S. Bacha, I. Munteanu and A. Bratcu, Power Electronic Converters: Modeling and Control, Springer-Verlag, 2014.
- 8. H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices, Springer-Verlag, 2006

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules