Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC7051	Digital Image	04			04			04
	Processing							

Course	Course	Examination Scheme							
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC7051	Digital	20	20	20	80	-	-	-	100
	Image								
	Processing								

Course Pre-requisite:

- EXS 401 : Applied Mathematics IV
- EXC 504 : Signal and Systems

Course Objectives:

- 1. To develop an overview of the field of image processing
- 2. To learn the fundamental concepts of Digital Image Processing .
- 3. To understand basic image enhancement and segmentation techniques.
- 4. To illustrate Image Transform calculations mathematically and develop fast transform algorithm
- 5. To learn Image Compression and Decompression Techniques

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand the concept of Digital Image processing.
- 2. Explain image enhancement and Segmentation technique.
- 3. Understand Digital Image compression and decompression techniques
- 4. Perform Binary Image Processing Operations

Module No	Unit No	Topics	Hrs.
1	110.	Digital Image Processing Fundamentals	06
	1.1	Introduction: Background, Digital Image Representation, Fundamental Steps in Image Processing, Elements of a Digital Image Processing System	
	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Sampling and Quantization, Some Basic Relationships between Pixels, Imagining Geometry. Image File Formats : BMP, TIFF and JPEG. Colour Models (RGB, HSI, YUV)	
2		Image Enhancement	08
	2.1	Spatial Domain Methods, Frequency Domain Methods, Some Simple Intensity Transformations, Histogram Processing, Image Subtraction, Image Averaging, Background	
	2.2	Smoothing Filters, Sharpening Filters, Lowpass Filtering, Highpass Filtering, Generation of Spatial Masks from Frequency Domain Specifications. Homomorphic Filtering.	
3		Image Segmentation and Representation	08
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based Segmentation, Split and Merge Technique,	
	3.2	Image Representation and Description, Chain Code, Polygonal, Representation, Shape Number, Moments.	
4		Binary Image Processing	06
	4.1	Binary Morphological Operators, Hit-or-Miss Transformation, Boundary Extraction, Region Filling, Thinning and Thickening, Connected Component Labeling, Iterative Algorithm and Classical Algorithm	
5		Image Transform	12
	5.1	Introduction to the Fourier Transform, The Discrete Fourier Transform, Some Properties of the Two-Dimensional Fourier Transform Fast Fourier Transform(FFT),	
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT), Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT),	
6		Image Compression:	12
		Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual Redundancy, Fidelity Criteria.	
	6.1	Image Compression Models – The Source Encoder and Decoder, Lossless Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman Coding, Differential PCM,	
	6.2	Lossy Compression Techniques: Improved Gray Scale Quantization, Vector Quantization, JPEG, MPEG-1.	
		Total	52

Recommended Books:

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- 3. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules