Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC7054	Optical Fiber	04			04			04
	Communication							

Course	Course Name	Examination Scheme								
Code		Theory Marks				Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test	Test	Ave. Of	Exam					
		1	2	Test 1 and						
				Test 2						
EXC7054	Optical Fiber	20	20	20	80	-	-	-	100	
	Communication									

Pre requisites:

- EXC503: Electromagnetic Engineering
- EXC405: Fundamentals of Communication Engineering
- EXC505: Digital Communication.

Course Objective: To teach students

- 1. Optical fiber wave guide structures, fabrication and signal degradation in fiber
- 2. The characteristics and working of various components used in optical link
- 3. Design and management of optical networks

Course Outcome: After successful completion of the course student will be able to

- 1. understand light wave propagation through fiber
- 2. identify structures, materials, and components used in optical link
- 3. analyze transmission characteristics of fiber
- 4. design and management of optical fiber links

Module	Unit	Topics	Hrs.
No.	No.		
1.		Overview of Optical Fiber Communication	10
	1.1	The evolution of fiber optic systems, elements of an optical fiber transmission link,	
		block diagram, advantages of optical fiber communication, applications	
	1.2	Ray theory transmission, total internal reflection, acceptance angle, numerical	
		aperture and skew rays	
	1.3	Modes, electromagnetic mode theory and propagation, single mode and multimode	
		fibers, linearly polarized modes	
	1.4	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors, splicer	
2		Optical Sources and Detectors	10
	2.1	Coherent and non-coherent sources, quantum efficiency, modulation capability of	
		optical sources	
	2.2	LEDs: Working principle and characteristics	
	2.3	Laser diodes: Working principle and characteristics	
	2.4	Working principle and characteristics of detectors: PIN and APD, noise analysis in	
		detectors, coherent and non-coherent detection, receiver structure, bit error rate of	
		optical receivers, and receiver performance	
3		Components of Optical Fiber Networks	08
	3.1	Overview of fiber optic networks, trans-receiver, semiconductor optical amplifiers	
	3.2	Couplers/splicer, wavelength division multiplexers and de-multiplexers	
	3.3	Filters, isolators and optical switches	
4		Transmission Characteristic of Optical Fiber	08
	4.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal	
		dispersion, waveguide dispersion and pulse broadening,	
	4.2	Dispersion shifted and dispersion flattened fibers, and non linear effects	
	4.3	Measurement of optical parameters, attenuation and dispersion, OTDR	00
5	– 1	Optical Networks	08
	5.1	SONET and SDH standards, architecture of optical transport networks (OTNs),	
	5 3	network topologies	
	5.2	Operational principle of WDM, WDM network elements and Architectures,	
6		Introduction to DWDM, Solitons.	08
U	6.1	Network Design and Management	Vð
	6.1 6.2	Point to point links system considerations, link power budget, and rise time budget	
	0.2	Transmission system model, power penalty-transmitter, receiver optical amplifiers, crosstalk, dispersion, wavelength stabilization.	
	6.3	Network management functions, configuration management, performance	
	0.5	management, fault management, optical safety and service interface	
		Total	52
		10141	34

Recommended Books:

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication, Singapore, 4th Edition, 2012
- 3. G Agarwal, "Fiber Optic Communication Systems", John Wiley and Sons, 3rd Edition, New York 2014
- 4. S.C. Gupta, "*Optoelectronic Devices and Systems*", Prentice Hall of India Publication, Chicago, 2005.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.