Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC801	CMOS VLSI Design	04			04			04

Subject	Subject	Examination Scheme								
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test	Test	Avg. of	Exam					
		1	2	Test 1 and						
				Test 2						
EXC801	CMOS	20	20	20	80				100	
	VLSI Design									

Course Pre-requisite:

- EXC302: Electronic Devices
- EXC303: Digital Circuits and Design
- EXC402: Discrete Electronic Circuits
- EXC502: Design With Linear Integrated Circuits
- EXC601: VLSI Design
- EXC702: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. discuss tradeoffs involved in analog VLSI Circuits.
- 2. analyze building blocks of CMOS analog VLSI circuits.
- 3. design building blocks of CMOS analog VLSI circuits
- 4. carry out verifications of issues involved in analog circuits via simulations

Module No.	Unit No.	Topics	Hrs.
1.0		CMOS analog building blocks	8
	1.1	MOS Models: Necessity of CMOS analog design, Review of characteristics of	
		MOS device, MOS small signal model, MOS spice models	
	1.2	Passive and Active Current Mirrors: Basic current mirrors, Cascode current	
		mirrors and Active current mirrors	ļ
	1.3	Band Gap References: General Considerations, Supply-independent biasing,	
		Temperature independent references, PTAT current generation and Constant Gm	
		biasing	
2.0		Single Stage Amplifiers	10
	2.1	Configurations: Basic concepts, Common source stage, Source follower, Common gate stage, Cascode stage	
	2.2	Frequency Response and Noise: General considerations, Common-source stage,	
		Source followers, Common-gate stage, Cascode stage and Noise in single stage	
		amplifiers	
3.0		Differential Amplifiers	10
	3.1	Configurations: Single ended and differential operation, Basic differential pair,	
		Common-mode response, Differential pair with MOS loads, Gilbert cell	
4.0	3.2	Frequency response and noise in differential pair	10
4.0		MOS Operational Amplifiers	10
	4.1	Op-amp Design: General Considerations, performance parameters, One-stage op-	
		amps, Two-stage op-amps, Gain Boosting, Common-mode feedback, Input range	
	4.2	limitations, Slew Rate, Power supply rejection, Noise in op-amps	-
	4.2	Stability and Frequency Compensation: General Considerations, Multipole	
		systems, Phase margin, Frequency compensation, compensation of two stage op- amps	
5.0		Mixed Signal Circuits	10
5.0	5.1	Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	10
	0.1	Precision Considerations, Charge injection cancellation, Unity gain buffer, Non-	
		inverting amplifier and integrator	
	5.2	Oscillators: General considerations, Ring oscillators, LC oscillators, VCO	
	5.3	Phase-Locked Loop: Simple PLL, Charge pump PLL, Nonideal effects in PLL,	
		Delay locked loops and applications of PLL in integrated circuits	
6.0		Analog Layout and other concepts	04
	6.1	Analog Layout Techniques: Antenna effect, Resistor matching, capacitor	
		matching, current mirror matching, floorplanning, shielding and guard rings	
	6.2	AMS design flow, ASIC, Full custom design, Semi custom design, System on Chip,	
		System in package, Hardware software co-design	
		Total	52

Recommended Books:

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules