Subject	Course	Teaching	Credits Assigned						
Code	Name	Scheme							
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total	
						Practical			
EXC803	MEMS	04			04			04	
	Technology								

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC803	MEMS	20	20	20	80	-	-	-	100
	Technology								

Course Pre – requisite:

- EXC 404: Basic VLSI Design
- EXC 604: IC Technology

Course Objective:

- To provide a basic knowledge of MEMS processing steps and processing modules.
- To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- To provide an understanding of basic design and operation of MEMS sensors and transducers.

Course Outcome:

On Completion of this course Student will be able to

- Understand the underlying fundamental principles of MEMS devices including physical operation, mathematical modeling and fabrication.
- Design and simulate MEMS devices and system using standard simulation tools.
- Develop different concepts of micro system sensors and actuators for real-world applications.

Module	Unit	Topics	Hrs.
N0.	No.		0.4
1.		Introduction to MEMS	04
	1.1	Introduction to MEMS & Real world Sensor/Actuator examples (DMD, Air-bag,	
		pressure sensors). MEMS Sensors in Internet of Things (IoT), BioMedical	
		Applications	
2		MEMS Materials and Their Properties	10
	2.1	Materials (eg. Si, SiO2, SiN, Cr, Au, Ti, SU8, PMMA, Pt); Important properties:	
		Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal	
		Conductivity, Material Structure. Understanding Selection of materials based on	
		applications.	
3		MEMS Fab Processes – 1	11
	3.1	Understanding MEMS Processes & Process parameters for: Cleaning, Growth &	
		Deposition, Ion Implantation & Diffusion, Annealing, Lithography. Understanding	
		selection of Fab processes based on Applications	
4		MEMS Fab Processes – 2	10
	4.1	Understanding MEMS Processes & Process parameters for: Wet & Dry etching, Bulk	
		& Surface Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging.	
		Understanding selection of Fab processes based on Applications	
5		MEMS Devices	11
	5.1	Architecture, working and basic quantitative behaviour of Cantilevers, Microheaters,	
		Accelerometers. Pressure Sensors. Micromirrors in DMD. Inkiet printer-head.	
		Understanding steps involved in Fabricating above devices	
6		MEMS Device Characterization	06
-	6.1	Piezoresistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, &	
		importance of these measurements in studying device behavior. MEMS Reliability	
	1	Total	52
		Total	52

Recommended Books:

- 1. An Introduction to Microelectromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 2. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 3. Microsystem Design by S. Senturia; Publisher: Springer
- 4. Analysis and Design Principles of MEMS Devices Minhang Bao; Publisher: Elsevier Science
- 5. Fundamentals of Microfabrication by M. Madou; Publisher: CRC Press; 2 edition
- 6. Micro Electro Mechanical System Design by J. Allen; Publisher: CRC Press
- 7. Micromachined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules