Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC8041	Robotics	04			04			04

Subject	Subject	Examination Scheme							
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total
		Internal assessment		End Sem.	Work				
		Test	Test	Avg. of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC8041	Robotics	20	20	20	80				100

Course Pre-requisite:

- EXS 301 : Applied Mathematics III
- EXS 401 : Applied Mathematics IV
- EXC 404 : Principles of Control Systems

Course Objectives:

- 1. To prepare students with basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3. To familiarize students with path & Trajectory planning of robots
- 4. To familiarize students with robot vision

Course Outcomes:

After successful completion of the course student will be able to

- 1. Describe kinematics and dynamics of stationary and mobile robots
- 2. Describe trajectory planning for robots
- 3. Implement trajectory generation and path planning various algorithms
- 4. Work in interdisciplinary projects

Module	Unit No	Topics	Hrs.				
1	110.	Fundamentals of Robotics	03				
1	11	Robot Classification Robot Components Degrees of freedom Joints Coordinates	05				
	1.1	Coordinate frames, workspace, applications					
2		Forward & Inverse Kinematics of Robots					
	2.1	Homogeneous transformation matrices, Inverse transformation matrices, Forward	1				
		and inverse kinematic equations – position and orientation					
	2.2	Denavit-Hatenberg representation of forward kinematics, Inverse kinematic					
		solutions, Case studies					
3		Velocity Kinematics & Dynamics	14				
	3.1	Differential motions and velocities : Differential relationship, Jacobian,					
		Differential motion of a frame and robot, Inverse Jacobian, Singularities.					
	3.2	Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation,					
		Dynamic equations of robots, Transformation of forces and moment between					
		coordinate frames					
4		Robot Motion Planning	04				
	4.1	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug					
5		Potential Functions and Visibility Graphs	08				
	5.1	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation					
		potential functions, Visibility map, Generalized Voronoi diagrams and graphs,					
		Silhouette methods					
6		Trajectory planning	08				
	6.1	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories					
7		Robot Vision	06				
	7.1	Image representation, Template matching, Polyhedral objects, Shape analysis,					
		Segmentation, Iterative processing, Perspective transform.					
		Total	52				

Recommended Books:

- 1. Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion – Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong, Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control", Wiley India Pvt. Ltd., 2006
- 5. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.
- Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications" ,McGraw Hill, New York, 2008

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules