Ī	Subject Code	Subject	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Name	-							
ĺ			Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
	EXC 8043	Digital	04			04			04	
		Control								
		System								

Subject	Subject	Examination Scheme								
Code	Name		T	heory Marks		Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
EXC 8043	Digital	20	20	20	80				100	
	Control									
	System									

Course Prerequisites:

• EXC404: Principles of Control System

• EXC504: Signals and Systems

Course Objective:

- 1. To study the importance of digital control
- 2. To study stability analysis of digital control systems
- 3. To study the design of digital control systems

Course Outcomes:

- 1. Students will be able to differentiate between analog and digital control and importance of digital control
- 2. Student will be able to analyze the digital control systems
- 3. Students will be able to design digital controllers

Module No.	Unit No.							
1.0		Introduction						
	1.1	Why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system						
	1.2	Data conversion and quantization, sampling and reconstruction of analog signal, zero and first order hold						
	1.3	Impulse invariance, bilinear transformation, finite difference approximation of derivatives						
2.0		Modeling of Digital Control System						
	2.1	Linear difference equation, pulse transfer function, input output model						
	2.2	Examples of first order continuous and discrete time systems						
	2.3	Signal flow graph applied to digital control system						
3.0		Time Domain Analysis and Stability of Digital Control System						
	3.1	Mapping between s plane and Z plane, Jury's method, R. H. criteria						
	3.2	Comparison of time response of continuous and digital control system						
	3.3	Steady state analysis of digital control system, effect of sampling on transient response						
4.0		State Space Analysis						
	4.1	Discrete time state equation in standard canonical form, similarity transformation						
	4.2	State transition matrix, solution of discrete time state equation						
	4.3	Discretization of continuous state space model and its solution.						
5.0		Pole Placement and Observer Design	10					
	5.1	Concept of reachability, controllability, constructability and observability						
	5.2	Design of controller using pole placement method, dead beat controller design						
	5.3	Concept of duality, state observer design, concept of multi rate output feedback based						
		state estimation						
6.0		Transfer Function Approach to Controller Design	10					
	6.1	Control structures, internal stability,						
	6.2	Internal model principle and system type, well behaved signals						
	6.3	Discretization of PID controllers, pole placement controllers with performance specifications						
		Total	52					
		Total	<i>5</i> <u>4</u>					

Recommended Books:

- 1. M. Gopal, "Digital Control and State Variable Methods", McGraw Hill companies, 3rd edition, 2009.
- 2. K. Ogata, "Discrete-Time Control Systems", PHI, 2nd edition, 2009.
- 3. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 4. K. M. Moudgalya, "Digital Control", Wiley India, 2012.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules