Course ande	Course Name	Teaching	Scheme (Hrs	Credit Assigned				
Course code		Theory	Practical	Tutorial	Theory	Practical	Tut.	Total
EXC8044	Biomedical	4						4
	Electronics	4						4

Course	Course Name	Examination Scheme							
code		Theory (out of 100)				Term	Practical	Oral	Total
		Internal Assessment (out			End	Work	and		
		of 20)			Sem.		oral		
		Test 1	Test 2	Avg.	Exam				
EXC8044	Biomedical Electronics	20	20	20	80				150

Course Pre-requisites:

- EXC305:Electronic Instruments and Measurements
- FEC102,202: Applied Physics I and II

Course Objective:

- 1. To make students understand the Identification, classification, and working principle of various Biomedical Instruments used for Bio-potential measurement
- 2. Application of these instruments in diagnosis, therapeutic treatment and imaging fields

Course Outcome:

The Students will be able to

- 1. Identify various Bio-potential and their specifications in terms of amplitude and frequency.
- 2. Understand principle and working of various Biomedical Instruments for diagnosis applications.
- 3. Decide the applications of therapeutic instruments for treatment purpose.
- 4. Understand applications of imaging instruments and the modalities involved in each technique.

Module	Unit	Topics	Hrs.		
No.	No.				
1		Bio-Potential and Measurement	08		
	1.1	Structure of Cell, Origin of Bio-potential, electrical activity of cell their			
		characteristic and specifications.			
	1.2	Measurement of RMP and AP. Electrode-Electrolyte interface and types of			
		bio-potential electrodes.			
2	Physiological Systems and Related Measurement				
	2.1	Respiratory system- Physiology of respiration and measurements of			
		respiratory related parameters			
	2.2	Cardiovascular system- Structure of Heart, Electrical and Mechanical			
		activity of Heart, ECG measurements and Cardiac arrhythmias			
	2.3	Nervous system- Nerve cell, neuronal communication, nerve-muscle			
		physiology, CNS, PNS. Generation of EEG and its measurement. Normal			
		and abnormal EEG, evoked potential and epilepsy			
	2.4	Muscular system- Generation of EMG signal, specification and			
		measurement.			
		Design of ECG amplifier	00		
3		Cardiovascular Measurement	08		
	3.1	Blood Pressure- Direct and Indirect types.			
		Blood Flow- Electromagnetic and Ultrasonic types.			
		Blood Volume- Types of Plethysmography. (Impedance, Capacitive and			
		Photoelectric)			
		Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type. Heart sound measurement			
4			08		
-	4.1	Life support Instruments Pacemaker- Types of Pacemaker, mode of pacing and its application.	00		
	4.1	Defibrillator- AC and DC Defibrillators and their application.			
		Heart Lung machine and its application during surgery.			
		Haemodialysis system and the precautions to be taken during dialysis.			
		Baby Incubator and its application			
5		Imaging Techniques	10		
-	5.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its			
		application			
	5.2	CT Scan- CT Number, Block Diagram, scanning system and application.			
		Ultrasound Imaging- Modes of scanning and their application			
	5.3	MRI- Concepts and image generation, block diagram and its application			
6		Significance of Electrical Safety	04		
	6.1	Physiological effects of electrical current, Shock Hazards from electrical			
		equipments and methods of accident prevention.			
		Total	52		

Recommended Books:

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2. John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3. R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004
- 4. Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- 5. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 6. John E Hall, Gyton's Medical Physiology, 12th edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules