SE Electronics Engineering

Semester III
Syllabus of Theory Subjects

Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial-	Total
							work	
EXS 301	Applied Mathematics III	04	--	01	04	-	01	05

Subject Code	Subject Name	Examination Scheme							
		Theory Marks				Tutorial as Term Work	Practical	Oral	Total
		Internal assessment			End Sem. Exam				
		$\begin{gathered} \text { Test } \\ 1 \end{gathered}$	$\begin{gathered} \text { Test } \\ 2 \end{gathered}$	Ave. Of Test 1 and Test 2					
$\begin{gathered} \text { EXS } \\ 301 \end{gathered}$	Applied Mathematics III	20	20	20	80	25	--	--	125

Course Prerequisite:

FE C 101: Applied Mathematics I FE C

201: Applied Mathematics II

Course Objective:

- To provide students with a sound foundation in Mathematics and prepare them for graduate studies in Electronics Engineering
- To make students to understand mathematics' fundamentals necessary to formulate, solve and analyze engineering problems.

Expected Outcome:

- Students will demonstrate basic knowledge of Laplace Transform. Fourier Series, Bessel Functions, Vector Algebra and Complex Variable.
- Students will demonstrate an ability to identify formulate and solve electronics Engineering problems using Applied Mathematics.
- Students will show the understanding of impact of engineering mathematics in the engineering
- Students will become capable and eligible to participate and succeed in competitive exams like GATE, GRE.

Module No.	Unit No.	Topics	Hrs.
1.0		Laplace Transform	12
	1.1	Laplace transform (LT) of standard functions: Definition. Unilateral and bilateral Laplace transform, LT of $\sin (a t), \cos (a t)$, $e^{a t}, t^{n}, \sinh (a t), \cosh (a t), \operatorname{erf}(t)$, Heavi-side unit step, direct- delta function, LT of periodic function	
	1.2	Properties of Laplace transform: linearity, first shifting theorem,	
		second shifting theorem, multiplication by t^{n}, division by t, Laplace transform derivatives and integrals, change of scale, convolution theorem, initial and final value theorem, Parsevel's identity	
	1.3	Inverse Laplace Transform: Partial fraction method, long division method, residue method, theorem of LT to find inverse	
	1.4	Applications of Laplace transform : Solution of ordinary differential equations	
2.0		Fourier Series	10
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae	
	2.2	Fourier series of functions: exponential, trigonometric functions, even and odd functions, half range sine and cosine series	
	2.3	Complex form of Fourier series, Fourier integral representation	
3.0		Bessel functions	08
	3.1	Solution of Bessel differential equation: series method, recurrence relation, properties of Bessel Function of order $+1 / 2$ and $-1 / 2$	
	3.2	Generating function, orthogonality property	
	3.3	Bessel Fourier series of a functions	
4.0		Vector Algebra	12
	4.1	Scalar and vector product: Scalar and vector product of three and four vectors and their properties	
	4.2	Vector differentiation : Gradient of scalar point function, divergence and curl of vector pint function	
	4.3	Properties: Solenoidal and Irrotational vector fields, conservative vector field	
	4.4	Vector integral: Line integral, Green's theorem in a plane, Gauss Divergence theorem, Stokes' theorem	
5.0		Complex Variable	10
	5.1	Analytic function: Necessary and sufficient conditions, Cauchy Reiman. equations in polar form	
	5.2	Harmonic function, orthogonal trajectories	
	5.3	Mapping: Conformal mapping, bilinear transformations, cross ratio, fixed points, bilinear transformation of straight lines and circles.	
		Total	52

Recommended Books

1. P. N. Wartikar and J. N. Wartikar, "A Text Book of Applied Mathematic", Vol. I \& II, Vidyarthi Griha Prakashan, Pune
2. A Datta, "Mathematical Methods in Science and Engineerin", 2012
3. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication
4. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
5. B V Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill Publication
6. Wylie and Barret, "Advanced Engineering Mathematics", McGraw-Hill 6th Edition
7. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley \& Sons, Inc
8. Murry R. Spieget, "Vector Analysis", Schaun's Out Line Series, McGraw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover 80% of syllabus. The average marks of two tests will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. The students need to solve total 4 questions.

3: Question No. 1 will be compulsory and based on entire syllabus. 4: Remaining questions (Q.2 to Q.6) will be set on all the modules. 5: Weight age of marks will be as per Blueprint.

Term Work:

At least 08 assignments covering entire syllabus must be given during the Class Wise Tutorial. The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every assignment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

