SE Electronics Engineering Semester III Syllabus of Theory Subjects

Subject Code	Subject Name	Т	eaching Sche	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial-	Total
							work	
EXS	Applied	04		01	04	-	01	05
301	Mathematics III							

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Tutorial	Practical	Oral	Total
		Internal assessment			End	as Term			
		Test	Test	Ave. Of	Sem.	Work			
		1	2	Test 1 and	Exam				
				Test 2					
EXS	Applied	20	20	20	80	25			125
301	Mathematics III								

Course Prerequisite:

FE C 101: Applied Mathematics I FE C 201: Applied Mathematics II

Course Objective:

- To provide students with a sound foundation in Mathematics and prepare them for graduate studies in Electronics Engineering
- To make students to understand mathematics' fundamentals necessary to formulate, solve and analyze engineering problems.

Expected Outcome:

- Students will demonstrate basic knowledge of Laplace Transform. Fourier Series, Bessel Functions, Vector Algebra and Complex Variable.
- Students will demonstrate an ability to identify formulate and solve electronics Engineering problems using Applied Mathematics.
- Students will show the understanding of impact of engineering mathematics in the engineering
- Students will become capable and eligible to participate and succeed in competitive exams like GATE, GRE.

Module	Unit	Topics	Hrs.			
No.	No.					
1.0		Laplace Transform	12			
	1.1	Laplace transform (LT) of standard functions: Definition.				
	Unilateral and bilateral Laplace transform, LT of <i>sin(at)</i> , <i>c</i>					
		e^{at} , t^{n} , sinh(at), cosh(at), erf(t), Heavi-side unit step, direct- delta				
		function, LT of periodic function				
	1.2	Properties of Laplace transform: linearity, first shifting theorem,				
		second shifting theorem, multiplication by t^{n} , division by t , Laplace transform derivatives and integrals, change of scale, convolution theorem, initial and final value theorem, Parsevel's identity				
	1.3	Inverse Laplace Transform: Partial fraction method, long division method, residue method, theorem of LT to find inverse				
	1.4	Applications of Laplace transform : Solution of ordinary differential equations				
2.0		Fourier Series	10			
	2.1	Introduction: Definition, Dirichlet's conditions, Euler's formulae				
	2.2	Fourier series of functions: exponential, trigonometric functions, even and odd functions, half range sine and cosine series				
	2.3	Complex form of Fourier series, Fourier integral representation				
3.0		Bessel functions	08			
	3.1	Solution of Bessel differential equation: series method, recurrence				
		relation, properties of Bessel Function of order $+1/2$ and $-1/2$				
	3.2	Generating function, orthogonality property				
4.0	3.3	Bessel Fourier series of a functions				
4.0	A 1	Vector Algebra	12			
	4.1	Scalar and vector product: Scalar and vector product of three and four vectors and their properties				
	4.2	four vectors and their propertiesVector differentiation : Gradient of scalar point function, divergence				
	4.2	and curl of vector pint function				
	4.3	Properties: Solenoidal and Irrotational vector fields, conservative				
	т.Ј	vector field				
	4.4	Vector integral: Line integral, Green's theorem in a plane, Gauss				
		Divergence theorem, Stokes' theorem				
5.0		Complex Variable	10			
	5.1	Analytic function: Necessary and sufficient conditions, Cauchy				
		Reiman. equations in polar form				
	5.2	Harmonic function, orthogonal trajectories				
	5.3	Mapping: Conformal mapping, bilinear transformations, cross ratio,				
		fixed points, bilinear transformation of straight lines and circles.				
		Total	52			

Recommended Books

- 1. P. N. Wartikar and J. N. Wartikar, "*A Text Book of Applied Mathematic*", Vol. I & II, Vidyarthi Griha Prakashan, Pune
- 2. A Datta, "Mathematical Methods in Science and Engineerin", 2012
- 3. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publication
- 4. B. S. Tyagi, "Functions of a Complex Variable," Kedarnath Ram Nath Publication
- 5. B V Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill Publication
- 6. Wylie and Barret, "Advanced Engineering Mathematics", McGraw-Hill 6th Edition
- 7. Erwin Kreysizg, "Advanced Engineering Mathematics", John Wiley & Sons, Inc
- 8. Murry R. Spieget, "Vector Analysis", Schaun's Out Line Series, McGraw Hill Publication

Internal Assessment (IA):

Two tests must be conducted which should cover 80% of syllabus. The average marks of two tests will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. The students need to solve total 4 questions.

3: Question No.1 will be compulsory and based on entire syllabus. 4:

Remaining questions (Q.2 to Q.6) will be set on all the modules. 5: Weight

age of marks will be as per Blueprint.

Term Work:

At least **08** assignments covering entire syllabus must be given during the **Class Wise Tutorial.** The assignments should be students' centric and an attempt should be made to make assignments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every assignment graded from time to time.** The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.