Antenna and Wave Propagation(304190)

Teaching Scheme:

Lectures:4 Hrs/ Week

Examination Scheme:

In Semester Assessment: Phase I : 30 End Semester Examination: Phase II: 70

Course Objectives:

- To understand the applications of electromagnetic engineering.
- To formulate and solve the Helmholtz wave equation and solve it for Uniform plane wave
- To analyze and understand the Uniform plane wave propagation in various media
- To solve the electric field and magnetic fields for a given wire antenna.

Course Outcomes:

After successfully completing the course students will be able to

- Formulate the wave equation and solve it for uniform plane wave
- Analyze the given wire antenna and its radiation characteristics
- Identify the suitable antenna for a given communication system

Unit I : Uniform Plane Waves

Maxwell Equations in phasor form, Wave Equation, Uniform Plane wave in Homogeneous, free space, dielectric, conducting medium. Polarization: Linear, circular & Elliptical polarization, unpolarized wave. Reflection of plane waves, Normal incidence, oblique incidence, Electromagnetic Power and Poynting theorem and vector.

Unit II : Wave Propagation

Fundamental equations for free space propagation, Friis Transmission equation. Attenuation over reflecting surface, Effect of earth's curvature. Ground, sky & space wave propagations. Structure of atmosphere. Characteristics of ionized regions. Effects of earth's magnetic field. Virtual height, MUF, Skip distance. Ionospheric abnormalities. Multi-hoppropagation. Space link geometry. Characteristics of Wireless Channel: Fading, Multipath delay spread, Coherence Bandwidth, and Coherence Time.

Unit III : Antenna Fundamentals

Introduction, Types of Antenna, Radiation Mechanism. Antenna Terminology: Radiation pattern, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half power beam width, bandwidth, antenna polarization, input impedance, antenna radiation efficiency,

8L

8L

6L

effective length, effective area, reciprocity. Radiation Integrals: Vector potentials A, J, F, M, Electric and magnetic fields electric and magnetic current sources, solution of inhomogeneous vector potential wave equation, far field radiation

Unit IV : Wire Antennas

Analysis of Linear and Loop antennas: Infinitesimal dipole, small dipole, and finite length dipole half wave length dipole, small circular loop antenna. Complete Analytical treatment of all these elements.

Unit V : Antenna Arrays

Antenna Arrays: Two element array, pattern multiplication N-element linear array, uniform amplitude and spacing, broad side and end-fire array, N-element array: Uniform spacing, non uniform amplitude, array factor, binomial and DolphTchebyshev array. Planar Array, Circular Array, Log Periodic Antenna, YagiUda Antenna Array

Unit VI : Antennas and Applications

Structural details, dimensions, radiation pattern, specifications, features and applications of following Antennas: Hertz & Marconi antennas, V- Antenna, Rhombic antenna. TW antennas. Loop antenna, Whip antenna, Biconical, Helical, Horn, Slot, Microstrip, Turnstile, Super turnstile & Lens antennas. Antennas with parabolic reflectors

Text Books

- 1. C.A. Balanis, "Antenna Theory Analysis and Design", John Wiley.
- 2. Mathew N O Sadiku, " Elements of Electromagnetics" 3rd edition, Oxford University Press

Reference Books

- 1. John D Kraus, Ronald J Marhefka, Ahmad S Khan, Antennas for All Applications, 3rd Edition, TheMcGraw Hill Companies.
- 2. K. D. Prasad, "Antenna & Wave Propagation", SatyaPrakashan, New Delhi.
- 3. John D Kraus, "Antenna& Wave Propagation", 4th Edition, McGraw Hill, 2010.
- 4. Vijay K Garg, Wireless Communications and Netwoking, Morgan Kaufmann Publishers, An Imprint of Elsevier, 2008.

6L

6L

6L