|
|
|
Pdf
Specs |
Exp |
Detection and
Estimation Theory Simulation Trainer |
Model |
1 |
Unit I : Statistical
Decision Theory
Introduction, Bayes’ Criterion-Binary Hypothesis Testing, M-ary
Hypothesis Testing, Minimax Criterion, Neyman-Pearson Criterion,
Composite Hypothesis Testing, Sequential Detection. |
DESTIMA100 |
2 |
Unit II : Parameter
Estimation-I
Introduction, Some Criteria for Good Estimators, Maximum
Likelihood Estimation, Generalized Likelihood Ratio Test, Bayes’
Estimation |
3 |
Unit III : Parameter
Estimation-II
Cramer-Rao Inequality, Multiple Parameter Estimation, Best
Linear Unbiased Estimator, Least-Square Estimation, Recursive
Least-Square Estimator. |
4 |
Unit IV : Filtering
Introduction, Linear Transformation and Orthogonality Principle,
Wiener Filters, Discrete Wiener Filters, Kalman Filter. |
5 |
Unit V : Detection
and Parameter Estimation
Introduction, Signal Representation, Binary Detection, M-ary
Detection, Linear Estimation. |
6 |
Unit VI : Detection
Theory in Radar
Introduction, Radar Elementary concepts- Range, Range
Resolution, and Unambiguous Range, Doppler Shift, Principles of
Adaptive CFAR Detection- Target Models, Review of Some CFAR
Detectors. |
|
|
|